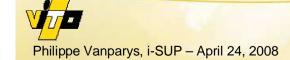
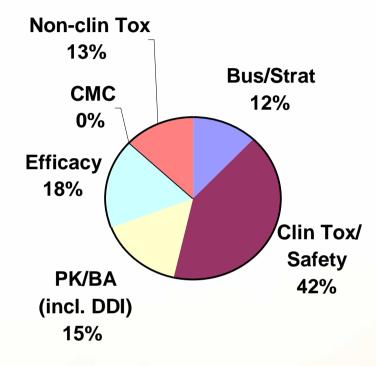

Alternatives for predictive toxicology in drug development: nice to have or added value?

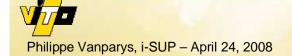
Philippe Vanparys, PhD CARDAM (Belgium)



Introduction

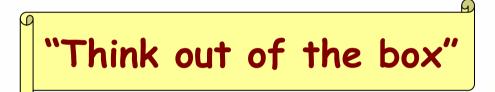
© 2004 Burrill & Company

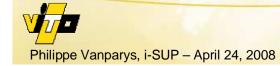

New test models and lower attrition rate of drug candidates can help to address the "Pharma Innovation Gap"



Primary reasons for discontinuation in Phase I

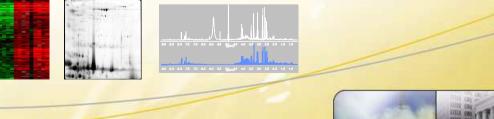
PBF* Benchmark 2000-04 n=195

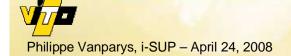

*Pharmaceutical Benchmarking Forum: Abbott Labs, Amgen, AstraZeneca, BMS, Lilly, GSK, J&J, Merck, Novartis, Pfizer, Roche, Schering-Plough



Need for better *in vitro* and *in vivo* liver toxicity test models

"Discovery consists in seeing what everyone else has seen and thinking what no one else has thought" Albert Szent-Gyorgi (1893-1986)

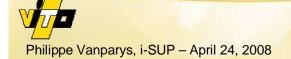


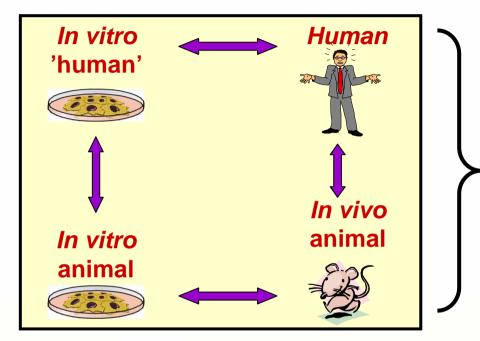

- Define new and better testing strategies: reconsider the testing paradigm for hepatototoxicity testing
- Make better use of existing regulatory test models Try to get more
- Develop new in vitro and in vivo test models
- Implement HTS models for compound selection

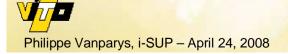
Know more earlier

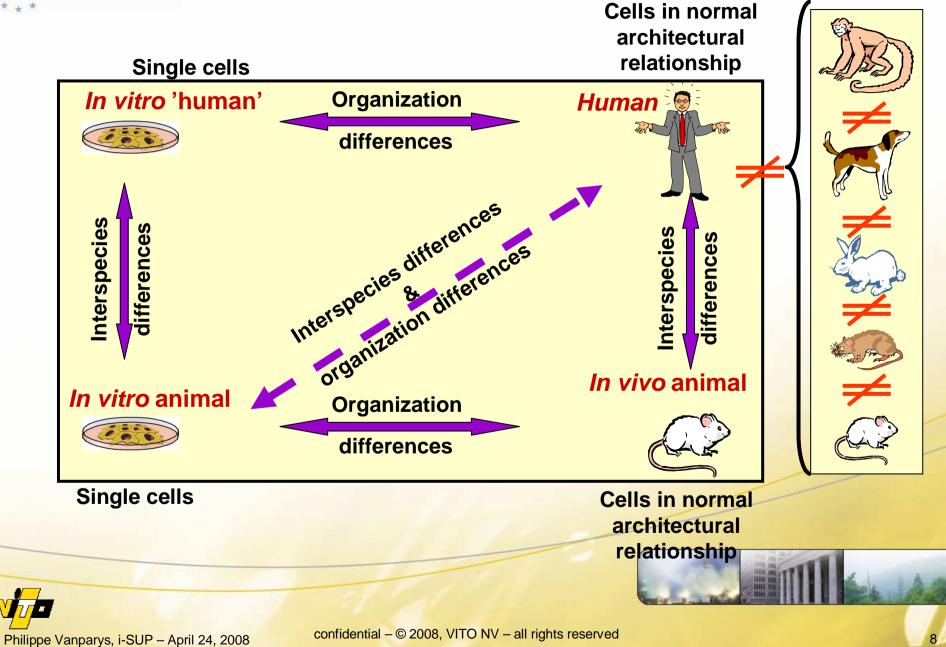
with less animals

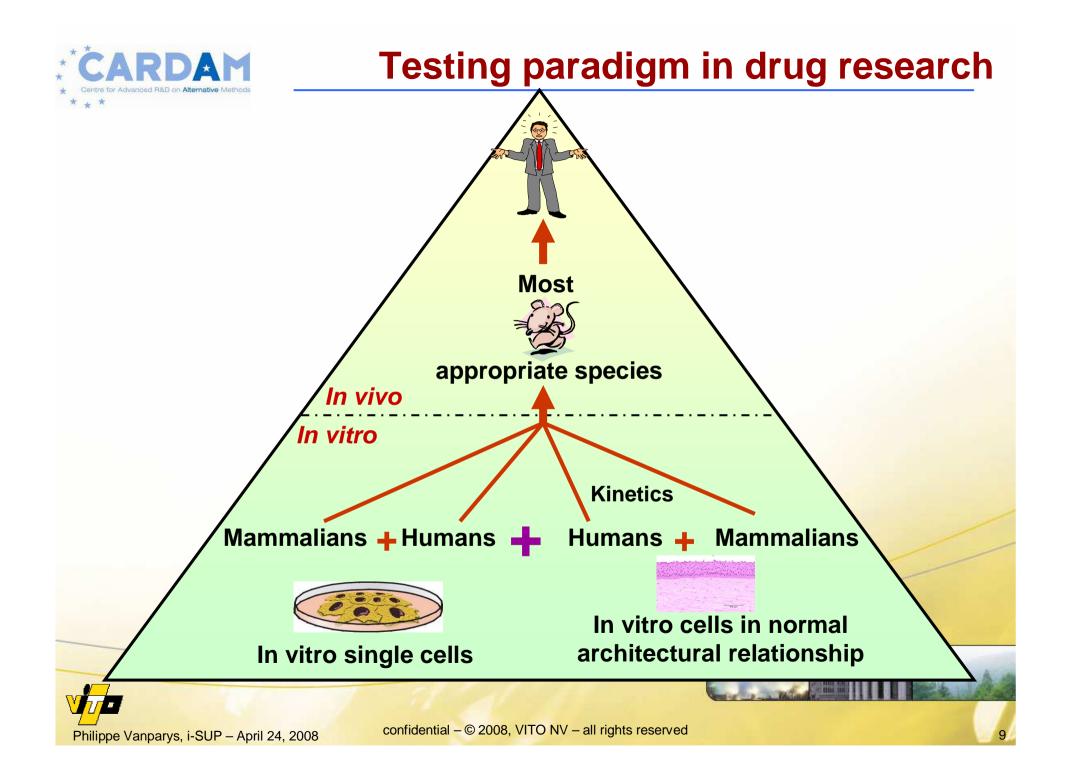
Integrate new techniques to define the mechanism of action

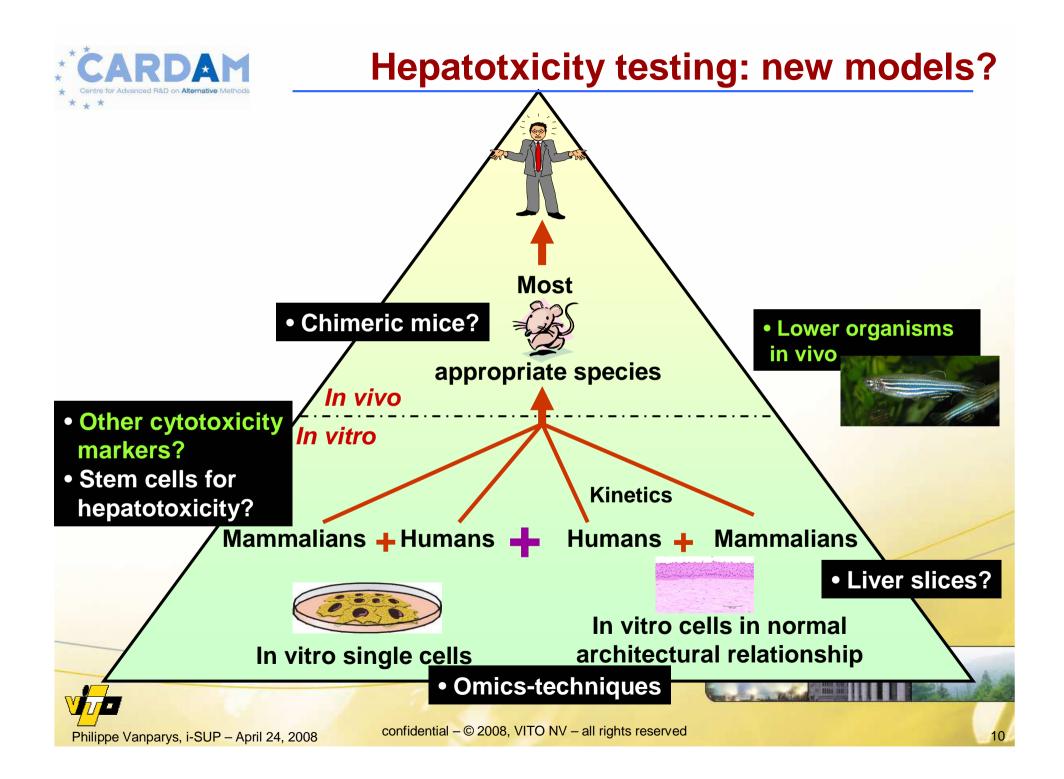



Testing paradigm for hepatotoxicity testing

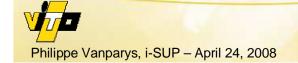



Current test models and testing strategies do not detect well <u>human</u> hepatotoxic compounds

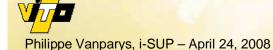




Testing paradigm



Cytotoxicity testing


Pfizer study [O`Brien et al. Arch. Toxicol, 2006; 80 (9): 580-604]

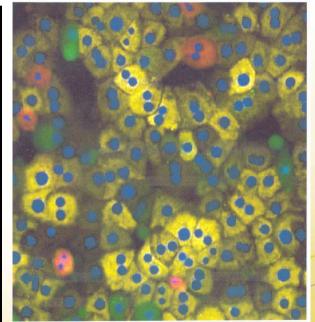
- > 611 compounds tested in vitro on HepG2 cells (48h incubation; 7 parameters)
 - 42 severely human hepatotoxic compounds
 - 283 moderately human hepatotoxic compounds
 - 286 non-toxic drugs

1					1
			<u>Sensitivity</u>	Specificity	
	1	DNA synthesis	10	92	
	2	Protein synthesis	4	97	
	3	Gluthathione depletion	19	85	
	4	Superoxide induction	1	97	
	5	Caspase-3 induction	5	5	
	6	Membrane integrity	2	99	
	7	Cell viability	10	92	
		Combination of above tests 1,3, 7	25	83	

High need for improved cytotoxicity assays

Pfizer study [O`Brien et al. Arch. Toxicol, 2006; 80 (9): 580-604]

Other cytotoxicity markers than the classical ones were tested in a high content screen


Tested 4 fluorophores in HepG2 for 3 days

Hoechst33342: nuclear size and cell number: nuclear shrinkage is hallmark of apoptosis. (late stage cytotox parameter).
Fluo-4 AM: intracellular free calcium: early

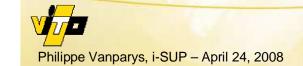
indicator of cell stress.

•TMRE: mitochondrial membrane potential: indicator of respiratory capacity of the cell (very early cytotox marker)

•TOTO3: plasma membrane permeability: late stage tox indicator (post mortem)

Sensitivity for human toxicity increased to 93%

243 drugs


Specificity for human toxicity increased to 98%

Results of a follow-up study by J&JPRD at CEREP

- The cytotoxicity assays with new parameters in HepG2 cells seem to be superior to classic cytotoxicity assays (LDH, ATP, neutral red, MTT, AlamarBlue, ...)
- In most of calculated IC_{50s}, the mitochondrial membrane potential was the most sensitive parameter
- Lowest IC_{50s} with the new parameters are always lower than the in house IC_{50s} values with LDH, NR and ATP
- Another applied prediction model is more predictive than the IC₅₀

How predictive is this assay?

• Currently database of 186 compounds (J&JPRD data, Cerep data, published Cerep data).

	Pred.	Pred.	Pred.	Pred.	Pred.	Pred.
	Mod 1	Mod 2	Mod 3	Mod 4	Mod 5	Mod 6
Severely	14+	24+	29+	31+	36+	42+
hepatotoxic	28-	18-	13-	11-	6-	0-
(42)	=33%+	=57%+	=69%+	= 74%+	= 86%+	=100%+
Moderately	26+	35+	48+	37+	49+	53+
hepatotoxic	34-	25-	12-	23-	11-	7-
(60)	=43%+	=58%+	=80%+	= 62%+	= 82%+	= 88%+
Toxic to	22+	29+	39+	27+	37+	42+
other organs	26-	19-	9-	21-	11-	6-
(48)	=46%+	=60%+	=81%+	= 56%+	= 77%+	= 88%+
Non-toxic drugs (36)	3+ 33- =8% false+	4+ 32- =11 % false-	14+ 22- =39% false+	1+ 35- =3% false+	1+ 35- =3% false+	4+ 32- =11%false+

How predictive is this assay?

Prediction model 2

		Liver tox	ic in vivo
		yes (*)	no
			FP
Cytotoxic	yes	59	4
in vitro	no	43	32
		FN	

(*): Significant/Moderate Human Hepatotoxic

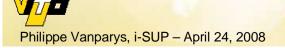
	%
Sensitivity	58
Specificity	89
Concordance	66

Pfizer study: sensitivity with conventional parameters was only 25%

Prediction model 5

(*): Significant/Moderate Human Hepatotoxic

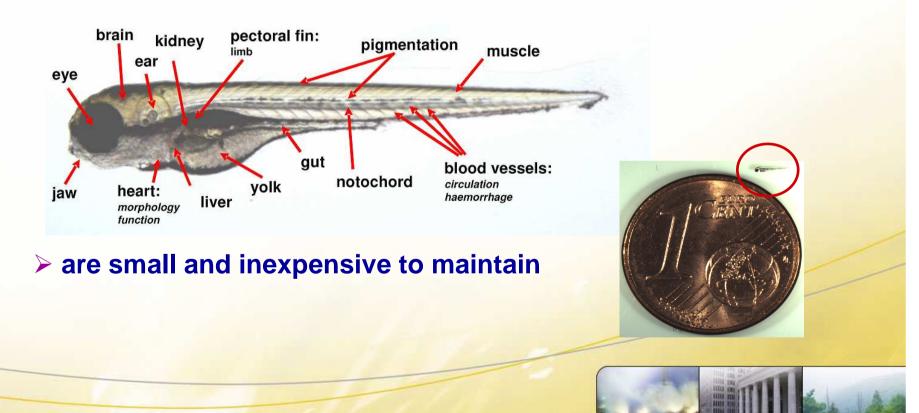
	%
Sensitivity	83
Specificity	97
Concordance	87

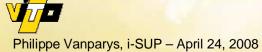


Conclusion on cytotoxicity testing

Sensitivity improved by using other parameters and by looking to the data in a different way.

Lower organisms:





Why?

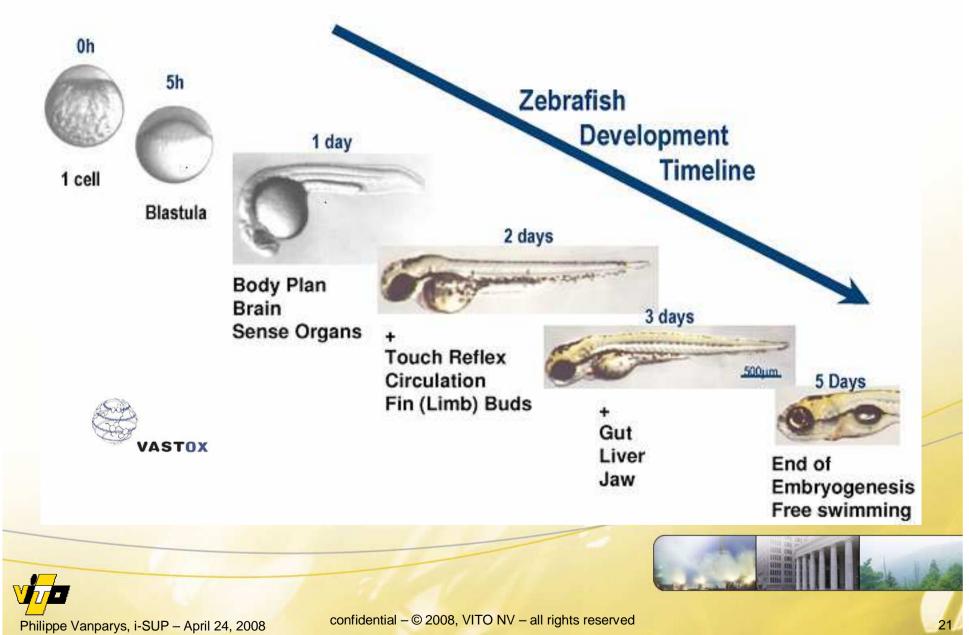
> physiology and development parallels that of mammals

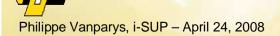
> optical transparency of the larvae makes real time observations of its internal organs simple

Iarvae can live several days in a single well of standard 24, 96 or 384 well plates surviving on nutrients stored in their yolk sac

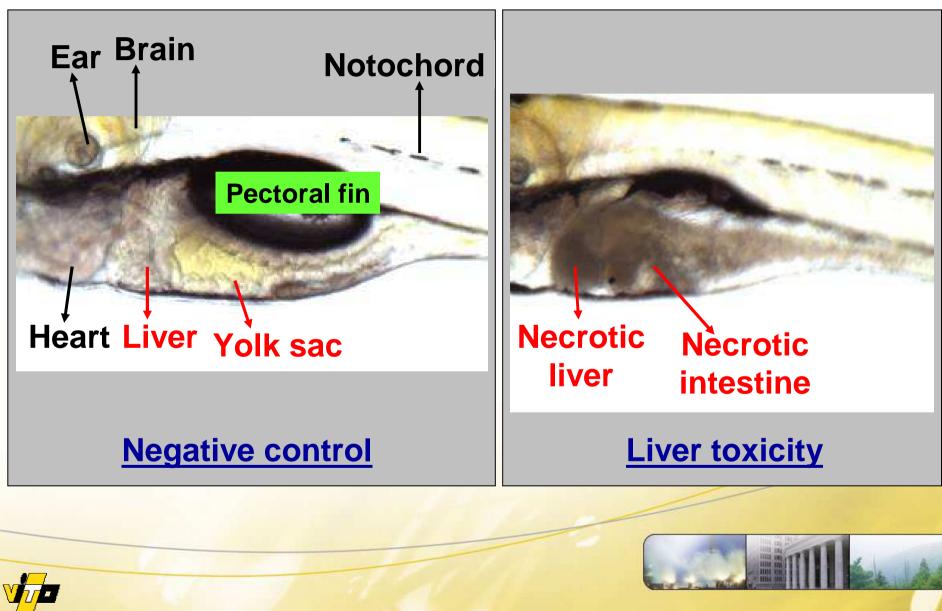
Zebrafish larvae at 6 days post fertilization in a 96-well plate

- easily bred in large numbers (a single pair of adults can routinely lay hundreds of fertilized eggs in a single morning)
- Iarvae absorb compounds in the surrounding water (Danieau's solution) through their skin and gills
- the liver constitutes 9% of the biomass
- compounds are solved in fish water or DMSO (tolerate up to 1.5% DMSO)





Test design: phenotypic screen for hepatotoxicity


- Concentrations: 0.5, 5, 10, 50, 100 and 500 μM
- 14 larvae per concentration
- Dosing takes place at 96 hpf (day 4) onwards at which time the liver is fully developed
- Assessment for liver toxicity at 144 hpf (day 6)
- Embryos are screened using a stereo dissecting microscope for the following endpoints:
 - Liver necrosis
 - Changes in size and shape of the liver
 - Yolk abnormality (yolk sac oedema)
 - Lethality

Philippe Vanparys, i-SUP – April 24, 2008

confidential - © 2008, VITO NV - all rights reserved

23

Results

Name	Hepatotoxicity in	Hepatptotoxicity in the zebrafish							
	mammalians	Phenotypic	Proteomic bio-	FINAL					
		screen	marker screen	CONCLUSION					
Lusaperidone	Monkey and human hepatotoxic								
Clofibrate	Rat and a few cases in humans								
Oxyphenisatin	Human hepatotoxic								
Ketoconazole	Rat hepatotoxic	(*)							
Itraconazole	Rat hepatotoxic								
Ridogrel	Rat hepatotoxic; not human hepatotoxic								
Acaftadine	Rat hepatotoxic	first study							
		second study							
J&J NCE 1	Rat hepatotoxic	ATN		ATN					
J&J NCE 2	Monkey and human hepatotoxic; negative in rat and dog								
Amiodarone	Severely human hepatotoxic								
Danazol	Severely human hepatotoxic after metabolisation								
Valproate	Severely human hepatotoxic after metabolisation	(*)							
Furazolidone	Moderately human hepatotoxic								
Tamoxifen	Moderately human hepatotoxic after metabolisation (inhibition of								
	taurocholate transport)								
Troglitazone	Human hepatotoxic (inhibition of taurocholate transport) (withdrawn from market)								
HP-Beta-CD									
J&J NCE 3									
Sucrose									
Gentamycin	Not hepatotoxic, nephrotoxic and ototoxic								
Praziquantel									
Biotine									
ATN: Additional Te	esting Needed eded to prove bioavailability	Negative	Equivocal	Positive					
urtesy of 🔇	Johnson-Johnson PHARMACEUTICAL RESEARCH and			1 Sel JAS					

By courtesy of

PHARMACEUTICAL RESEARCH & DEVELOPMENT DIMISION OF JANSSEN PHARMACEUTICA N.N.

Phenotypic screen			Liver toxic in rodents and/or humans			
(20 compounds)			yes	no		
				FP		
	Liver	yes	11	3		
	toxic					
	in					
	zebrafish	no	3	3		
			FN			
			%			
	Sensitivity		79			
	Specificity		50			
	Concordar	nce	70			
By courtesy of PHARMACEUTIC	Johnson CAL RESEARCH AD					

Protein markers			Liver toxic in rodents and/or humans			
(5 compounds)			yes	no		
+ Phenotypic screen (20 compounds)	Liver toxic	yes	12	FP 2		
	in zebrafish	no	2	4		
			FN			
			%			
	Sensitivity		86			
	Specificity		67			
	Concordan	се	80			
By courtesy of PHARMACEUTICA B DEVELOP	chuson LRESEARCH and	ce				

Positive concentrations

Compound				Conce	entratic	on (µM)										Conclusion
	0.5	_1	5	7.5	10	20	25	30	50	75	100	200	300	500	1000	
Clofibrate																
Amiodarone											Р			Р		
Danazol																
Troglitazone																
Lusaperidone																
J&J NCE2																
Tamoxifen																
Itraconazolo										L	L					
Furazolidone											L			L		
Gentamycin																
Praziquantel																
Ridogrel												L				
Acaftadine														L		
J&J NCE3																
Ketoconazole																
Oxyphenisatin																
HP-beta-CD																
Sucrose																
Valproate																
Biotine																
J&J NCE1																Additional testing
No effect	Liver	necro	osis	Weak	liver	toxic	P: Pr	ecipita	ation	Not te	ested	Leth	nal	L: Le	thal	
	By cou	rtesy	of	S.	Johns PHARMACE 8. DE BMSKN ST	ON-JOH	HảOM ESEARCH NT TRAM.	and		nmit			-		m	Res 14

Conclusion on the zebrafish

- The zebrafish model is a suitable and promising model to screen for liver toxins. An acceptable sensitivity index was obtained.
- Human specific liver toxins were detected to be hepatotoxic to the zebrafish at low concentration levels.
- False positives were only obtained at high concentration levels.
- Phenotypic screen may be used as a first filter for liver toxicity.

General conclusion

 By considering test models which mimic more closely the human body, we may get more relevant information.
 By putting our test models in question, we may get more out of them.
 By exploring lower organisms, we may get very promising test models for screening purposes to deselect toxic compounds before they enter in animal and man.

29

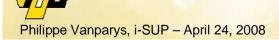
Acknowledgement

Johnson Johnson PHARMACEUTICAL RESEARCH & DEVELOPMENT DIVISION OF JANSSEN PHARMACEUTICA N.Y.

Toxicology

Coussement Werner

DMPK


Snoeys Jan

Mechanistic Toxicology Hansen Erik Mesens Natalie Peters Annelieke Spanhaak Steven Steemans Margino

Verheyen Geert

THANK YOU!

