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Introduction
•Emerging need in chemical management is 
Development of Integrated Testing Strategies (ITS)

− Gain more comprehensive basis to make a decision
− Better reuse existing data to make ITS resources efficient

•New type and larger amounts of data are changing 
paradigms of data evaluation

• ongoing refinement of in vitro tests - experimental design (i.e. concentration at which chemicals 
are tested), 

• Many new in vitro tests that provide new insights on mechanistic basis of the endpoint 
evaluated

• How to integrate information from several tests each addressing a different 
mechanism

• Increasing reliance on vitro data requires development of methods for data integration
• Methods for in vitro data integration need to be fitting to generalize integration with other data, 

Adme, other biologically related endpoints, Mechanism



Part 1.Towards data integration 
strategy – understanding what we 

have and were we are going to



Strategy of data integration from in 
vitro data in application to assess in 
vivo endpoint
•Replacement of in vivo tests by a single in vitro study is not realistic given the complexity of 
mechanisms involved in the in vivo test.

•Combinations of several in vitro tests, covering relevant mechanistic steps if possible and 
organized in a logical, hypothesis driven decision scheme are needed to make efficient use 
of generated data. 

•The development of new in vitro tests addressing improvements in understanding of the 
toxicity mechanisms are subject of active research.

•The field that needs equal attention and further development are methodologies to 
integrate multiendpoint data to provide: 
•transparent, 
•structured, 
•consistent 
•And hypothesis driven interpretation to support a decision (OECD Workshop on Integrated 
Testing Approaches, 2007). 



How to meet criteria to be consistent, 
transparent, structured ? –
We need a formal framework

• Evolution of the framework of narrative to qualitative to quantitative
− To increase rational and coherent interpretation
− To quantify uncertainty 

• can assess value of information of individual tests and batteries, 
• eventually guide testing –avoid duplication of information, stop testing when 

desired/or maximum possible reliability/ uncertainty reduction is achieved.

• Provide objective ways to deal with complex and conflicting information
− Mix of categorical and continuous data

• Methods that allow to combine history, expert opinion, experiments and model 
results and reflect hierarchy of the testing strategy
− Initial hypothesis is revised based on the new evidence to generate updated 

hypothesis



Possible integration approaches
• Frameworks for data integration that meet criteria put 
forward by the OECD are different flavours of quantitative 
weighing schemes. 

• Scoring - Among them scoring schemes are the easiest to 
apply and many were developed (Calabrese et al. 2007). 
They are very useful for relative ranking. The weights can be

• Heuristic ( test 1 – 5, test 2 – 3 etc.)

• Developed by datamining and fitting to a particular model structure ( 
eg. Linear model – the decision of the model is again heuristic)

• Weighing schemes can also be probabilistic. 



Test battery

•The goal is to combine results of individual tests to 
achieve greater predictivity than predictivity of 
individual tests and therefore increase confidence in 
overall assessments.

•This presentation discusses Bayesian interpretation 
of tests battery results 

• probabilistic reasoning 



Bayesian interpretation of test battery

•Formal logical tool to combine complex information into one 
framework by probabilistic reasoning 
formally generates one result: probability that a chemical is/is
not active based on a specific battery outcome. 

•Meets all the desired characteristics
• structured, 
• transparent, 
• objective, 
• Quantitative
• Updates hypothesis as new evidence arrives
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Example of Bayes' Theorem

Likelihood
Prior
Posterior

•The location (mean) of the posterior distribution is between the ones for the prior and 
the likelihood, i.e. it is a weighted average between the two parameter estimates (from prior and likelihood).
•The location of the posterior distribution is closer to the location of the likelihood curve because there is more 
data in the new study (80 subjects) versus the “data” from the prior (30 subjects).
•The curve for the posterior is narrower than any of the other two curves.



What is predictivity ?
For a 2-state condition (C+, C-) performance characteristics of a test (T+, T-) 
are

• Sensitivity Pr(T+|C+)
• Pr (T+|S-) is high for many in vitro tests

• Specificity Pr(T-|C-)
Characteristics of the validation set. Cannot tell much about state of the 

chemical.
For Bayesians predictivity is assessed by Posterior Probability Pr(C|T)

• Predictive value positive 

• Predictive value negative 

• Note reversal of the conditionality: given an outcome of the test (+;-) what is 
the probability a chemical is +/-

• Predictive value depends on the  prior probability Pr(S) –this is place to 
introduce chemical specific information : like prevalence of C+ in the chemical 
class
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Part 2.

Case study – Bayesian interpretation 
of in vitro genetox battery to assess 

carcinogenicity



Bayesian evaluation of carcinogenicity potential 
with in vitro genetox battery case study – data set

•Kirkland D., Aardema M., Henderson L. Müller L. 2005 Evaluation of the 
ability of a battery of 3 in vitro genotoxicity tests to discriminate rodent 
carcinogens and non-carcinogens. I. Sensitivity, specificity and relative 
predictivity Mut. Res. 584, 1-256 of over 700 chemicals

• Sensitivity                      Specificity 
Test (Pr(T+|C+) Pr(T-|C-)
Ames 0.59 0.74
MLA 0 73 0.39
CA 0.66 0.45

•T+ is a positive test result, C+ chemical is a rodent carcinogen in vivo, T- is a 
negative test result, C- chemical is not a rodent carcinogen in vivo.
Sensitivity= #carcinogens positive in the invitro genetox assay/#carcinogens 
evaluated;   
Specificity= #noncarcinogens negative in the invitro genetox
assay/#noncarcinogens evaluated; 



Bayesian calculations of a battery’s 
predictivity

2nd test result 
sensitivity of 2nd test
specificity of 2nd test

Posterior Probability 
of 2nd test resultPrior X

nth test result
sensitivity of nth test
specificity of nth test

Posterior Probability 
of nth test resultPrior X

1st test result 
sensitivity of 1st test
specificity of 1st test

Posterior Probability 
of 1st test result to 
yield accurate prediction 
of in vivo 

Prior X



Bayesian interpretation of results from 3 genotoxicity in vitro

tests: Ames (A), Mouse Lymphoma assay (MLA) and 

Chromosomal Aberration assay (CA) – strategy for analyses

• Influence of the prevalence or prior knowledge about the 
chemical property

• Increase predictivity

• Guide testing by quantifying uncertainty
− Comparison of results from dependent test battery vs. 

independent test battery



Predictive value of individual tests
P (C+|T) 

Prior 0.01 0.1 0.2 0.5 0.8

A+, 0.022 0.2 0.36 0.69 0.9

A- 0.006 0.06 0.12 0.36 0.69

MLA+ 0.012 0.024 0.23 0.55 0.83
MLA- 0.007 0.014 0.15 0.41 0.74

CA+ 0.012 0.024 0.23 0.55 0.83

CA- 0.008 0.015 0.16 0.43 0.75

•This type of analysis allows us to  
•gives perspective on the “check-box” approach; 
•encourages to develop a prior- i.e. develop a hypothesis before we test
•Clearly, one must be careful not to conflate the quite distinct notions of the 
“truth” of the data and the “significance” of the data, 

• The chance that a chemical is C+ after A+ increases about 2 times
• The chance that a chemical is C+ after A- decreases about 2 times
• Predictive values of MLA and CA are about the same across chemical 
classes with different prevalence of C+



Predictive value of 2 tests Ames and MLA
C+ P(C-) C+ P(C-) C+ P(C-) C+ P(C-)

P(C+) 0.1 0.2 0.5 0.8

P(C+|A+) 0.2 0.8 0.36 0.64 0.69 0.31 0.9 0.1

P(C+|MLA+, A+) 0.25 0.75 0.43 0.57 0.75 0.25 0.92 0.08

P(C+|MLA-, A+) 0.09 0.91 0.19 0.81 0.48 0.52 0.79 0.21

P(C+|A-) 0.06 0.94 0.12 0.36 0.69

P(C+|MLA+,A-) 0.08 0.92 0.16 0.84 0.43 0.57 0.75 0.25

P(C+|MLA-, A-) 0.04 0.96 0.08 0.92 0.27 0.73 0.60 0.40

• MLA + after Ames+ improves our belief that a chemical is carcinogenic only by maximum 6%. This might be 
seen unexpected to the readers used to consensus counts who would interpret positive result in 2 tests 
doubles the probability that a chemical is carcinogen compared to positive result in 1 test. 
•MLA- after Ames- is more informative because in the range of priors 0.5-0.8 we gain about 10% in certainty 
that a chemical is not a carcinogen.
• Predictive values of MLA+, A- and MLA-, A+ are about the same across all priors. 
•If we cut off 0.7 for accepting the conclusion that a chemical is a carcinogen then for a prior 0.5 MLA+, Ames 
+ would suffice to reach this conclusion, for the prior of 0.8  MLA+, Ames+ and MLA-, Ames +, would suggest 
that a chemical is a carcinogen. For the prior 0.5 MLA-, Ames +, MLA+, Ames- predictive values suggests that 
we need to generate more data to refine our assessment.
•It is important to note a high number of false positives P(C-|T+) for the low priors, but also a high number of 
false negatives P(C+|T-) for high priors



Predictive value of 2 tests – Ames and CA
C+ P(C-) C+ P(C-) C+ P(C-) C+ P(C-)

P(C+) 0.1 0.2 0.5 0.8

P(C+|A+) 0.2 0.8 0.36 0.64 0.69 0.31 0.9 0.1

P(C+|CA+, A+) 0.24 0.76 0.42 0.58 0.74 0.26 0.92 0.08

P(C+|CA-, A+) 0.08 0.92 0.16 0.84 0.43 0.57 0.75 0.25

P(C+|A-) 0.06 0.94 0.12 0.36 0.69

P(C+|CA+,A-) 0.07 0.93 0.14 0.86 0.39 0.61 0.72 0.28

P(C+|CA-, A-) 0.06 0.94 0.12 0.88 0.36 0.64 0.70 0.30

• CA + after Ames+ improves our belief that a chemical is carcinogenic by maximum 5%. This again might 
be seen unexpected to the readers used to consensus counts who would interpret positive result in 2 tests 
doubles the probability that a chemical is carcinogen compared to positive result in 1 test. 
•CA - after Ames- is not informative because for small priors the predictive value is the same as predictive 
value of Ames negative, and for larger priors the difference is just over 1%. 
•When resolving conflicting data: CA+, A- or CA-, A+ we can see a difference compared to MLA and Ames 
conflicting results. Probability that a chemical is a carcinogen given CA-, Ames+ is 3-4% higher compared 
to CA+, Ames- results for the priors in the 0.5-0.8 range. The result CA-, Ames + is marginally more 
conclusive than CA+, Ames-. 
•Following our 0.7 cut-off rule for CA, Ames battery and 0.5 prior we would only accept CA+, Ames+ as 
sufficiently conclusive. Other CA, Ames battery outcomes are not conclusive and need to generate more 
data to refine our assessment. 
•It is important to note a high number of false positives P(C-|T+) for the low priors, but also a high number 
of false negatives P(C+|T-) for high priors.



Predictive value of 3 tests –
Ames-, MLA, CA
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•Adding MLA after A- is valuable because if result is negative then the chance is further 
reduced by 10%, if positive the chance that a chemical is C+ increases but by only 5%. 
•Conducting CA is not bringing significant refinement to the evaluation of the carcinogenicity 
potential. 

Adding CA after A-, MLA- brings no further refinement
Adding CA after A-, MLA+ brings no further refinement



Resolving conflicting results
• The approach helps to weigh uncertainty when resolving conflicting 

results:
(+, +, -)

• P(C+|CA-, MLA+,A+)=0.65
• P(C+|CA+,MLA-,A+)=0.64
• P(C+|CA+;MLA+,A-)=0.41

• P(C+|CA+,MLA+,A+)=0.74

(-, -, +)
• P(C+|CA+,MLA-,A-)=0.27
• P(C+|CA-,MLA+,A-)=0.45
• P(C+|CA-,MLA-,A+)=0.37

• P(C+|CA-,MLA-,A-)=0.27

Pr(C+)=0.5



Conditional dependence between 
tests

•Tests have overlapping mechanisms
•Tests are used to predict the same endpoint

•Varying degree of conditionality was observed for different tests outcomes
•P(CA-, MLA-, A+) i-d=0.52 – 0.34=0.17

•Assuming independence we tend to overpredict
•When tests are more predictive conditionality will deflate predictive values of the 
battery
•Useful perspective when thinking how many, and how good tests we need to 
reach a decision based on the battery



What about hypothesis driven 
approach

•For the genetox battery need to add a test checking if a 
chemical is genetoxic or epigenetic carcinogen

• Experimental test

• Chemoinformatic approach ( Toxtree)
•In general

• As we understand more and more about molecular pathways we will 
be developing hierarchical integration schemes



Part 3. Exploratory work with eye 
irritation data



Decision schema using 
BCOP and NI/I

Sensitivity or Pr(T+|C+)=0.74

Specificity or Pr(T-|C-) =0.78BCOP

R41 or FP(R36) or FP(NC)

FN(R41) or R36 or NC 

+

-

NI/I

R41 or R36 or FP(NC)

FN(R41) or FN(R36) or NC 

+

-

Sensitivity or Pr(T+|C+)=a

Specificity or Pr(T-|C-) =b

Pr(R36 or NC| BCOP+)=Pr(R36|BCOP+) + Pr(NC|BCOP+)
Pr(R41|BCOP+)

Pr(R41 or R36)
Pr( NC)



Building decision tree
for anionic surfactant

BCOP

+

-

R41=0.59
R36 or NC=0.41

R41=0.13   FN
R36 or NC=0.87

Proceed to NI/I ?
Have data on Pr(NC) ?

+

-

+

-

NI/I

NI/i

NC=0.84
R36 or R41=0.16

NC=0.15
R36 or R41=0.85

NC=0.57
R36 or R41=0.43

NC=0.04
R36 or NC=0.96

By conducting NI/I after BCOP we may reduce probability of FN 
but quantitative answer requires knowledge of R36/R41 ratio



Summary

Application of a Bayesian battery approach meets multiple criteria for 
integration strategy

• allows to quantify uncertainty propagation  in a tiered mode 
• Refined predictivity of the battery compared with simple consensus approach

• Transparent resolution of conflicting information

Large differences in interpreting result on activity/lack of it depending on 
the prior –
Develop the hypothesis!



Comment on the prior from chemical class to 
mechanism based
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Outlook
This analysis was done on the data set level the next step is to do it on the 

compound (mechanistic hypothesis, good prior) - “individualized “ toxicology ?

Cheminformatics Bioinformatics

Statistical data mining



Outlook

This approach can be applied in development of/ and even 
validation of in vitro testing strategies

Can be also helpful in setting up realistic policies by quantifying 
FN, or FR rates based on the tests available
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