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Introduction

Land use maps:
• Sporadic availability of maps
• Inconsistent number of classes
• Inconsistent class definition
• Quality changes in time
• Scale changes in time
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Introduction
Satellite remote sensing:
• High temporal availability compared to land 

use maps (daily, 16 days, etc.)
• Consistent in time for one sensor
• Consistent in space for one sensor
• Consistent in quality
• Consistency only under clear skies
• Current classifications incompatible with land 

use maps
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Introduction
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Per-pixel classification
• Based on the statistics derived from the spectral 

characteristics of all pixels in an image
– Pixels are sorted, based on mathematical criteria
– Classification based on training (decision rules)

Dry

Water
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Per-pixel classification
Multi-Spectral Image

Band 1

Band 2

Band 3

Band #

Training Set: Digitize Polygons

1. Sample Spectral Pattern of training sites
2. Compare unknown pixel to patterns
3. Assign pixel to most similar category

Output: Thematic Raster Map
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Per-pixel classification
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Per-pixel classification

Tea
plantations

Sugar
cane
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Supervised Land Cover Classification of Western Kenya (Van der Kwast, 2001)
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Per-pixel classification

Band 1
Band 2

Band 3

Centre pixel

Neighbour pixels

Neighbour pixels

Conventional 
classification methods 
use per-pixel techniques

Spatial patterns are 
neglected with 
conventional techniques
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Contextual classification

Source: Harts et al., 2002
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Contextual classification

• Contextual classification methods
– Based on unclassified image

• Contextual re-classification methods
– Based on spatial metrics applied to a per-pixel classified

image

Centre pixel

Neighbour pixels

Neighbour pixels

Contextual classification
methods take spatial
patterns into account
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Spatial metrics

• Spatial metrics or landscape metrics:
– Quantitative measures to describe 

structures and patterns of a landscape and 
provide information about the contents of 
the landscape mosaic or the shape of the 
component landscape elements

– Derived from thematic-categorical data that 
show spatial heterogeneity at a specific 
scale and resolution 
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Spatial metrics
• Calculation at patch-level, class-level, 

landscape level or moving window-level
• Examples of spatial metrics:

– Class area
– Patch density
– Edge density
– Fractal dimension
– Contagion
– Adjacency events

Moving Window or Kernel (3 x 3)
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Spatial metrics

• Landscape-level, two classes 
(urban / non-urban)
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Spatial metrics
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• Class-level: Landscape Metrics Signatures 
(LMS) for each urban land use class

Landuse Map 1990 Classification Classification Landuse Map 1990



18June 6, 2008 confidential – © 2008, VITO NV – all rights reserved

Spatial metrics

• Moving-window level, circular window, 
radius = 1600 m, urban / non-urban

• Contagion

Landuse map Classification

Fuzzy Kappa, average = 0.854
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Optimized SPARK
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Source: Alimohammadi & Shirkavand

Moving Window or Kernel (3 x 3)

SPARK = SPAtial Reclassification Kernel
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Optimized SPARK

Source: Alimohammadi & Shirkavand
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Optimized SPARK
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Results
Land use map Dublin 1990 OSPARK classification Dublin 1988

Kappa: 0.549
Fraction correct: 0.791
KHisto: 0.908
KLocation: 0.605

Fuzzy Kappa: 0.456
Fuzzy Fraction correct: 0.858
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Discussion

OSPARK is a good framework for 
applying moving window-level spatial 
metrics

• Replace adjacency event matrix with 
any metric or set of metrics

• Use other GOF measure in stead of ∆k
• Option to use circular kernel
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Discussion
• Positive correlation between number of 

templates and accuracy for a class
• How many samples are optimal?

Automatic template evaluation by using 
∆k values between templates:
– Minimize ∆k between classes
– Minimize ∆k within classes

• How many classes of input land cover 
image are optimal?
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Conclusions

• Contextual classification techniques are 
better suited to distinguish functional 
classes than per-pixel classifiers

• Spatial metrics provide an interesting 
way of comparing maps, model outputs 
and remote sensing classifications at 
higher levels of abstraction


