

"MULTIBARRIER AND MINE SITE REDEVELOPMENT"

Stoyan Groudev¹, Plamen Georgiev¹, Irena Spasova¹, Marina Nicolova¹, Anatoli Angelov¹ and Ludo Diels²

¹Department of Engineering Geoecology, University of Mining and Geology "Saint Ivan Rilski", Sofia 1700, BULGARIA

²VITO, Mol 2400, Belgium

<u> Brugge, April 22 – 24, 2008</u>

Acidithiobacillus ferrooxidans bacteria on a liquid nutrient medium

Colonies of *Acidithiobacillus ferrooxidans* on a solid nutrient medium with a ferrous iron as an energy source

Acidithiobacillus thiooxidans on a solid nutrient medium with S⁰ as an energy source

Acidithiobacillus thioooxidans in a liquid nutrient medium

Microorganisms in the acid mine drainage and in the effluents from the permeable reactive multibarrier

Microorganisms	In AMD	In barrier effluents
	Cells/ml	
Fe ²⁺ -oxidizing chemolithotrophs (at pH 2)	$10^4 - 10^7$	$0 - 10^{2}$
Aerobic heterotrophs (at pH 2)	$10^{1} - 10^{4}$	10 ¹ - 10 ³
$S_2O_3^{2}$ -oxidizing chemolithotrophs (at pH 7)	0 - 10 ³	$10^{1} - 10^{4}$
Aerobic heterotrophs (at pH 7)	$0 - 10^{2}$	$10^1 - 10^4$
Anaerobic heterotrophs (at pH 7)	0 - 101	$10^4 - 10^7$
Sulphate-reducing bacteria	0 - 10 ¹	$10^4 - 10^7$
Cellulose-degrading microorganisms	ND	$10^3 - 10^6$
Bacteria fermenting sugars with gas production	ND	$10^{3} - 10^{7}$
Ammonifying bacteria	ND	$10^2 - 10^5$
Denitrifying bacteria	ND	$10^2 - 10^5$
Fe ³⁺ -reducing bacteria	ND	$10^3 - 10^6$
Methane-producing bacteria	ND	$10^{1} - 10^{4}$

Data about the dump effluents before and after the treatment of the dump

Parameters	Acid Mine drainage	Multibarrier effluents	Permissible levels for waters intended for use in agriculture and industry
Temperature, °C	(+1.2)-(+25.1)	(+1.4)-(+27.5)	-
pH	2.42 - 4.25	6.22 – 7.83	6 – 9
Eh, mV	(+290)-(+597)	(-140)-(-280)	-
Dissolved O ₂ , mg/l	1.7 – 6.0	0.2 - 0.4	2
TDS, mg/l	930 - 2972	545 – 1827	1500
Solids, mg/l	41 – 159	32 - 104	100
DOC, mg/l	0.5 - 2.1	51 – 159	20
SO_4^2 , mg/l	532 - 2057	275 – 1225	400

Data about the acid mine drainage and of the effluents from the permeable reactive multibarrier (continuation)

Parameters	Acid Mine drainage	Multibarrier effluents	Permissible levels for waters intended for use in agriculture and industry
U, mg/l	0.10 - 2.75	< 0.05	0.6
Ra, Bq/l	0.05 - 0.50	< 0.03	0.15
Cu, mg/l	0.79 - 8.24	< 0.20	0.5
Zn, mg/l	0.59 - 15.84	< 0.20	10
Cd, mg/l	< 0.01 - 0.10	< 0.004	0.02
Pb, mg/l	0.08 - 0.55	< 0.02	0.2
Ni, mg/l	0.23 - 1.45	< 0.03 - 0.10	0.5
Co, mg/l	0.15 - 1.04	< 0.03 - 0.10	0.5
Fe, mg/l	41 - 671	0.7 - 9.5	5
Mn, mg/l	3.2 – 29.3	0.5 - 4.8	0.8
As, mg/l	0.05 - 0.32	< 0.01	0.2

Content of pollutants in the dead solid plant biomass in the permeable reactive multibarrier

Pollutants	Content, mg/kg dry biomass				
	November 2004	March 2005	August 2005	March 2006	September 2006
Uranium	10 - 32	17 – 71	23 - 88	32 - 114	32 - 122
Radium	5 – 14	10 - 32	15 - 41	21 – 53	23 – 57
Copper	28 - 73	37 – 134	44 - 181	60 - 225	62 – 221
Zinc	14 - 51	28 - 82	37 - 190	51 - 230	59 - 242
Cadmium	2 – 12	6 – 19	6 - 27	8 - 41	8 - 44
Lead	8 - 30	7 – 59	10 - 64	15 – 73	15 – 77
Nickel	8 – 35	9 - 62	9 - 77	15 – 90	19 – 95
Cobalt	5 - 30	11 - 51	14 - 70	17 - 82	16 – 90
Manganese	32 - 109	37 - 135	44 - 190	51 - 210	55 - 233
Arsenic	2 - 14	6 - 23	10 - 31	12 - 44	12 - 51

Sulphate-reducing bacteria in the effluents from the permeable reactive multibarrier

Sulphate-reducing bacteria	Cells/ml
Desulfovibrio (mainly D. desulfuricans)	10⁴ - 10 ⁷
Desulfobulbus (mainly D. elongatus)	10² - 10⁷
Desulfococcus (D. postgatei)	10² - 10 ⁶
Desulfobacter (D. multivorans)	10² - 10⁵
Desulfotomaculum (mainly D. nigrificans)	10¹ - 10 ⁴
Desulfosarcina (D. variabilis)	10² - 10⁵
Desulfomonas (non-identified species)	10¹ - 10 ⁴

Removal of pollutants from the drainage waters during the different climatic seasons

Pollutant	Pollutant removal, g/24h	
	During the warmer months	During the cold winter months (at 0 - 5 °C)
Uranium	62 - 242	23 - 82
Copper	91 - 451	32 - 154
Zinc	190 - 974	41 - 387
Cadmium	1.4 - 5.9	0.5 - 1.7
Lead	21 - 77	8.2 - 24
Nickel	48 - 145	21 - 53
Cobalt	41 - 122	15 - 44
Manganese	109 - 1090	51 - 334
Arsenic	14 - 41	0.5 - 18

CONCLUSIONS

- The constructed pilot-scale multibarrier performed an efficient cleanup of acid drainage polluted with radionuclides, heavy metals and arsenic during different climatic seasons;
- Considerable portions of iron and uranium were removed in the alkalizing drain of the multibarrier. However, the microbial dissimilatory sulphate reduction and the sorption of the pollutants by the solid organic biomass in the second unit of the multibarrier were the main processes involved in the water cleanup;
- The efficiency of treatment markedly depended on the temperature. In the cold winter months when the microbial growth and activity were considerably decreased, the role of the biosorption mechanism by the solid organic substrates was essential;
- The multibarrier effluents were enriched in dissolved organic compounds and usually still contained iron and manganese in concentrations higher than the relevant permissible levels. These pollutants were removed in the natural wetland located near the multibarrier.

THANK YOU!!!