

## **Investigating the worth of flux-based approaches in development of brownfields: the FRAC-WECO project**

A. Dassargues<sup>1,7</sup> W. Dejonghe<sup>3</sup>, L. Diels<sup>3</sup>, S.Brouyère<sup>1,2</sup>, D. Caterina<sup>1</sup>, O.Batelaan<sup>4,7</sup>, J. Dujardin<sup>5</sup>, F. Canters<sup>5</sup>, J.P. Thomé<sup>6</sup>, V. Debacker<sup>6</sup>, S. Crevecoeur<sup>6</sup>, C. Hérivaux<sup>8</sup> <sup>1</sup>Hydrogeology & Environmental Geology, University of Liège <sup>2</sup>Aquapôle-University of Liège <sup>3</sup>Flemish Institute for Technological Research, VITO <sup>4</sup>Dpt of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel <sup>5</sup>Dpt of Geography, Vrije Universiteit Brussel <sup>6</sup>Lab. Animal Ecology & Ecotoxicology, SGE Dpt, University of Liège <sup>7</sup>Applied geology and mineralogy, EES Dpt, KULeuven <sup>8</sup>BRGM, Orléans, France



Aquapôle



Vrije Universiteit Brussel



# FRAC-WECO Consortium

- Coordinator: ULg Geo<sup>3</sup>-Hydrogeology
   S.Brouyère, A.Dassargues, D. Caterina
- P1: ULg LEAE

□ J.-P. Thomé, V.Debacker, S.Crevecoeur

P2: VITO

L.Diels, W.Dejonghe

 P3: VUB Hydrology and Hydraulic Engineering / Geography
 O.Batelaan, F.Canters, J. Dujardin

PI: BRGM – Service Eau
 C.Hérivaux

# Risk assessment before development of brownfields

- FRAC-WECO=Flux-based Risk Assessment of the impact of Contaminants on Water resources and ECOsystems
  - integrated methodology for more comprehensive risk assessment of contaminated sites on water resources and ecosystems

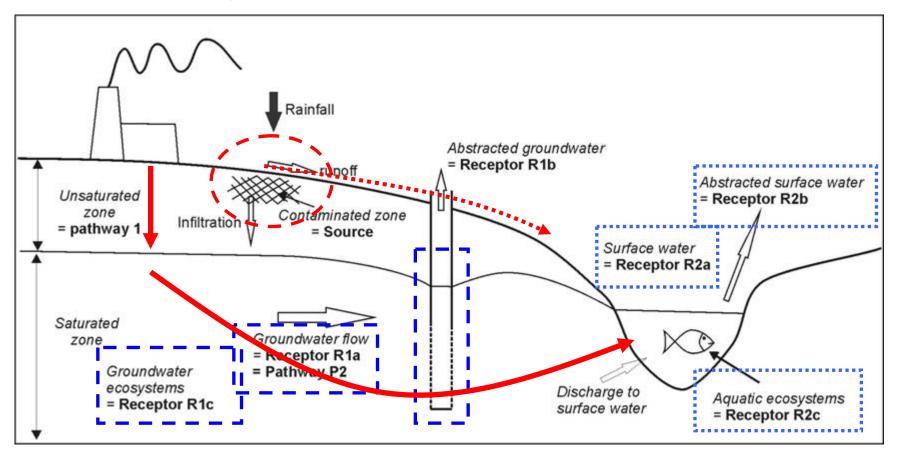
#### Process studies → water

& contaminant fluxes, biogeochemical properties and ecotoxicity of contaminants Impact studies → risk assessment methodologies, socio-eco analysis

#### Management tools & Indicators for ranking contaminated sites in terms of risks & costs

➔ Integration schema

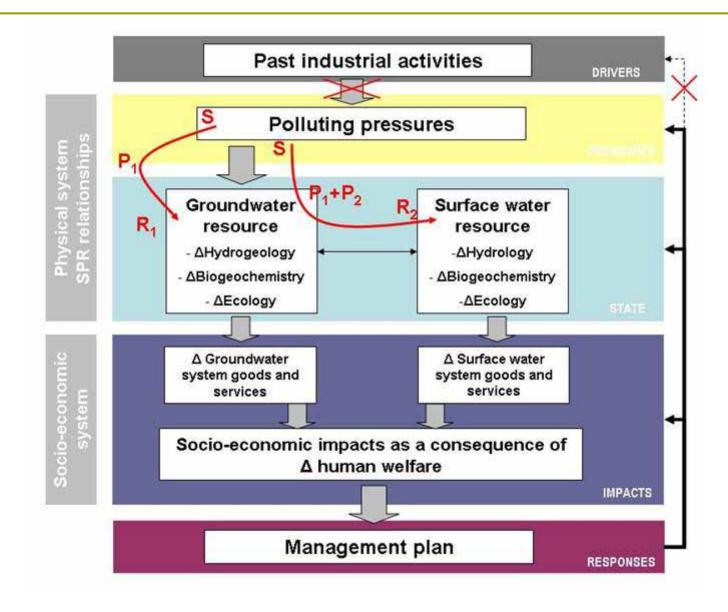
# Outline


Conceptual description of the studied system

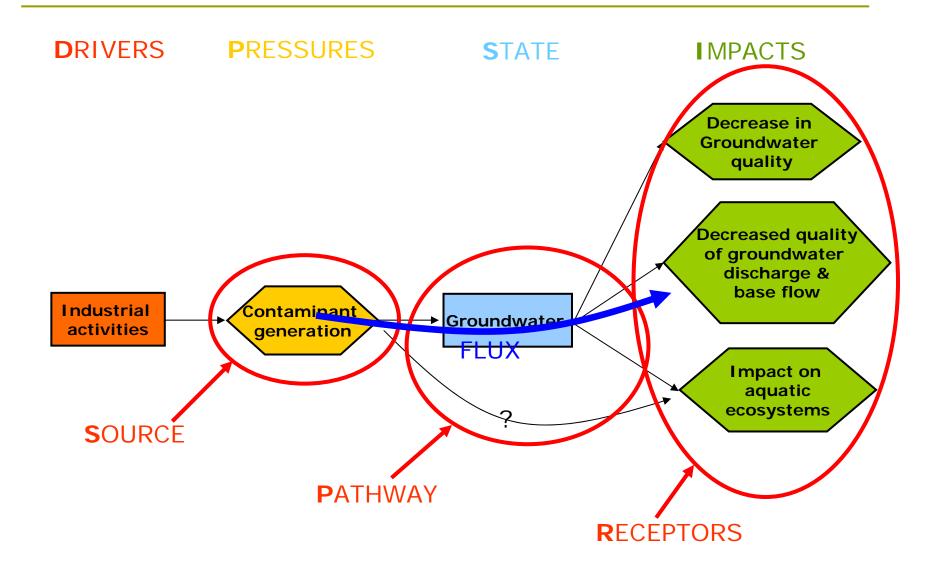
- Physical components & Source-Pathway-Receptor (SPR) approach
- Socio-eco & physical components: Drivers-Pressures-State-Impacts-Response (DPSIR)
- Combined DPSIR SPR approach
- Decision Support
  - Risk Assessment framework
  - DPSIR Indicators
- Process Studies
  - Study of the water flow
  - Study of the contaminant fluxes
  - Socio-Economic Analysis (State Impacts relationships & Analysis of Responses)
- **D** FRAC-WECO Research activities Year 1

Example

# Physical components & SPR approach


#### Source – Pathway – Receptor approach




# Socio-Eco & Physical Components: DPSIR

- Drivers
  - Existing contamination sources 
     Drivers not explicitly considered as potential components of the analysis, no preventive measures possible
- Pressures = Source of contaminants, from where contaminants are emitted
- State: aquatic system related to
  - Groundwater
  - Surface water <u>as impacted by groundwater</u>
- Impacts
  - Related to changes in the aquatic system
  - Characterized as changes of goods and services provided by aquatic systems → change in human welfare
  - Expressed in monetary terms = change of the total economic value (TEV) of the aquatic systems due to change in their state
- Responses
  - Decision Makers have to take decisions to improve the state or mitigate the impacts

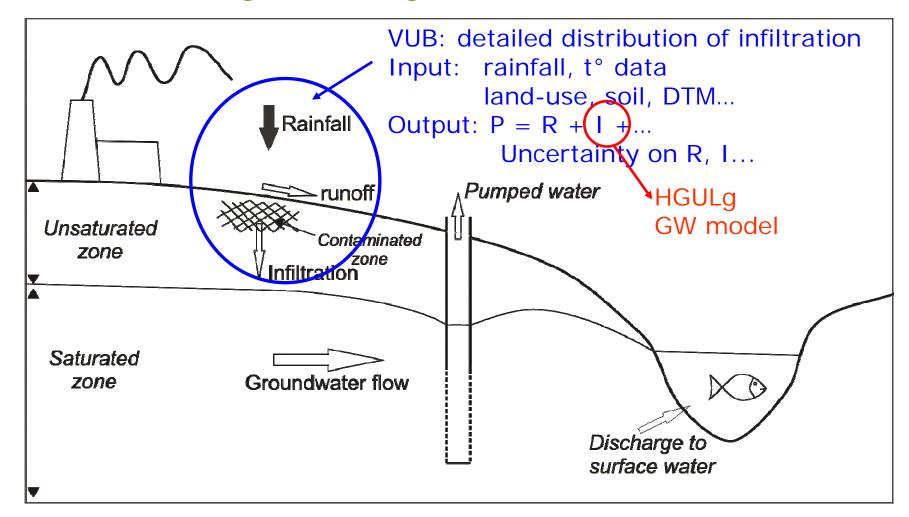
# Combined DPSIR-SPR approach



# FRAC-WECO & DPSIR & SPR

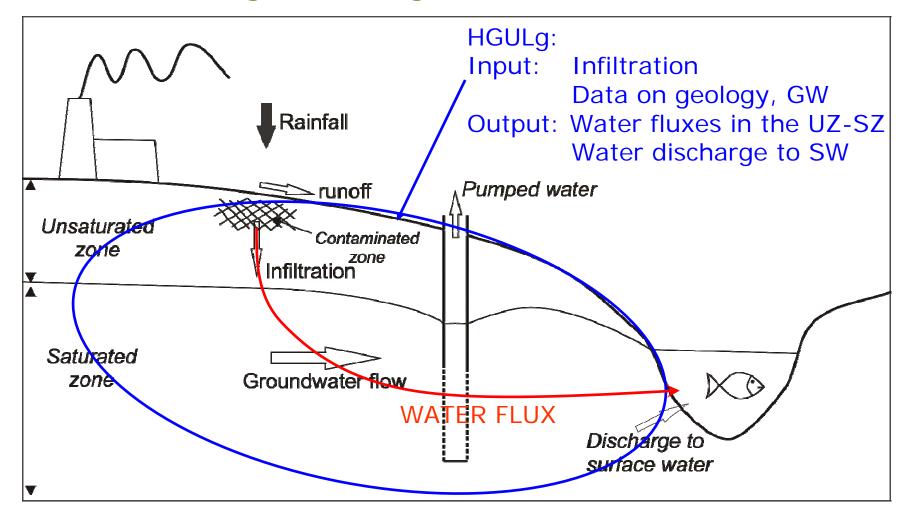


# **Decision Support**


□ Combined DPSIR – SPR → Conceptual framework for understanding and structuring the problem (contamination issue)

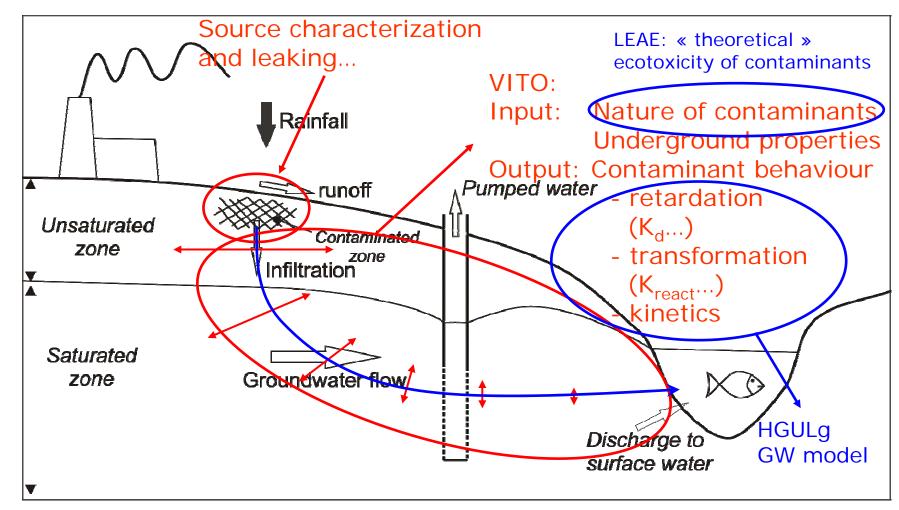
#### To take decisions:

- → Flux-based indicators (decisional variables) used as reference values for Risk Assessment and Socio-Economic Analysis
- → Good description of the Physical System + Modelling Tools for quantifying ongoing processes and calculating these indicators
- Socio-economic framework for evaluating and ranking alternative responses


# **Progress in Process Studies**

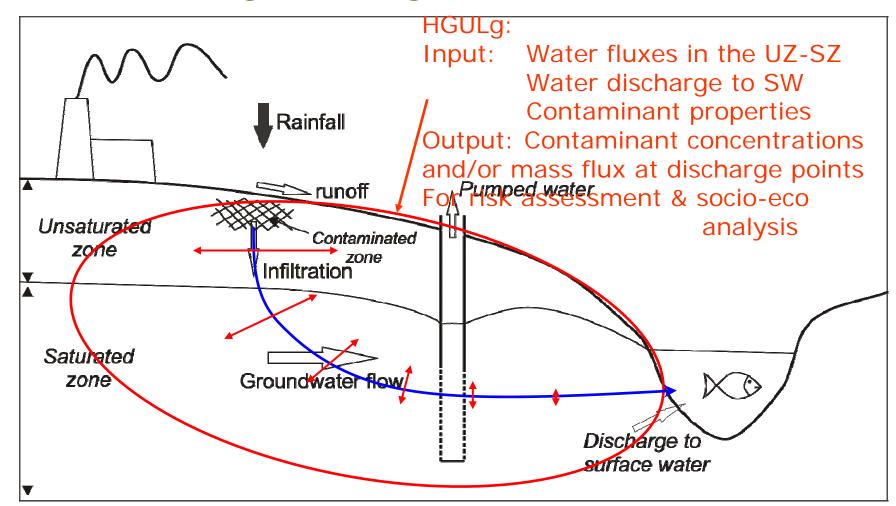
**D** Processes governing water flows




# **Process Studies**

**D** Processes governing water flows




# **Process Studies**

#### **D** Processes governing contaminant fluxes



# **Process Studies**

**D** Processes governing contaminant fluxes



# Socio-Economic Analysis (S-I relationships)

#### Policy context

- DPSIR & Economic Analysis → Decision support
- Economic Analysis of environmental damages & management plans in line with WFD and GWDD
- However:
  - Quality threshold values to be established for GW bodies at risk for the end of 2008
- Economic analysis to be carried out in close cooperation with end-users of the project (OVAM, SPAQuE, DGRNE...)

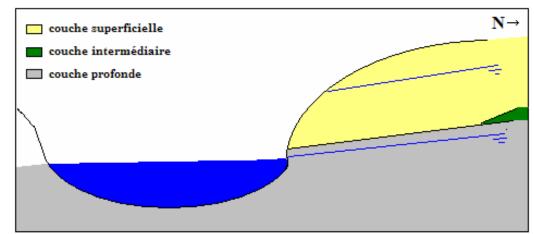
BRGM

#### **u** ULg-HG

- Data collection for the test sites
- First field investigations
- Integration methodology
- Review of risk assessment tools
- Groundwater model development for the Morlanwelz test site

#### **D** VUB

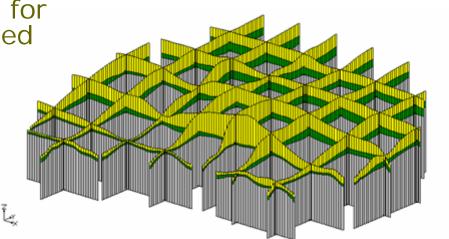
- Image selection and preprocessing
- Object –oriented land cover mapping
- Image segmentation and classification
- Validation of the classification results

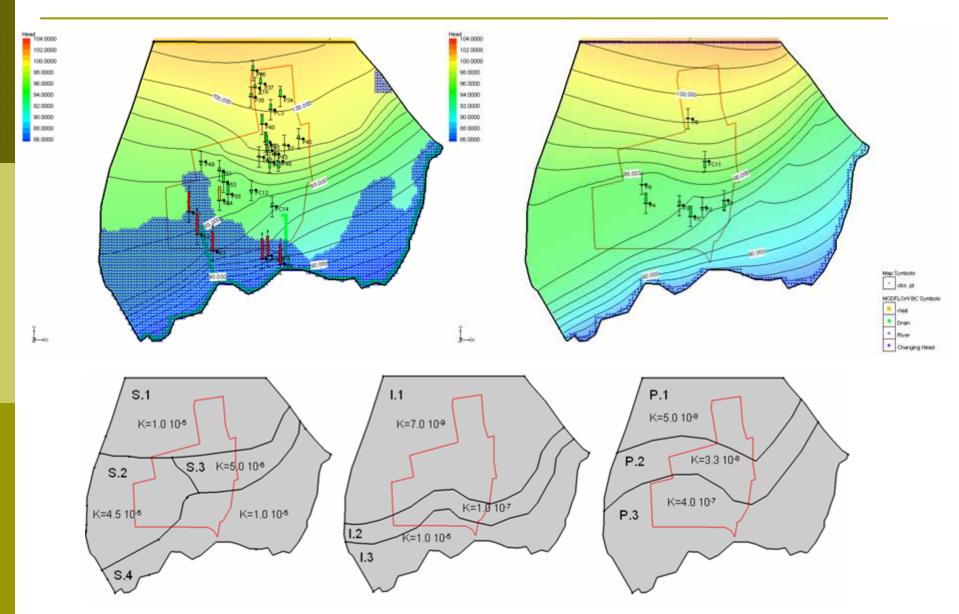

#### D VITO

Batch tests to study CAH degradation potential at three locations at the Zenne study site

#### **D** ULg – LEAE

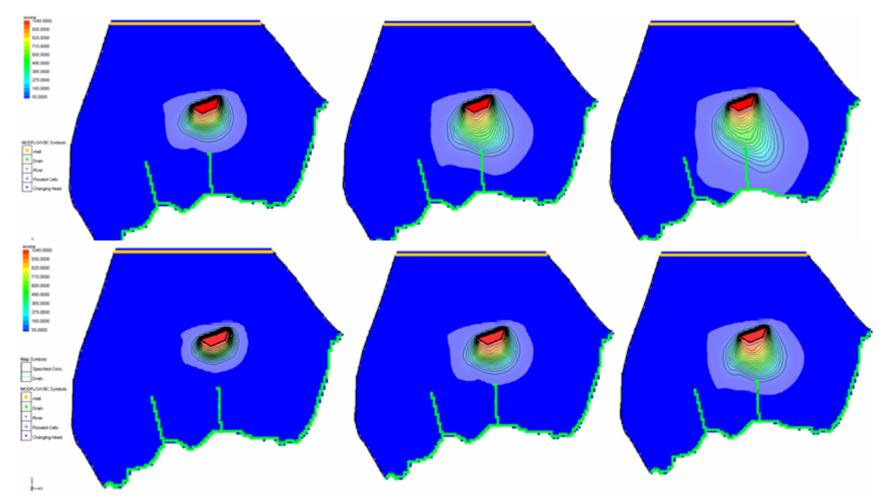
- Sampling water and invertebrates
- Analysis of contaminants
- Ecotoxicological tests and risk assessment
- **B**rgm
  - Integration methodology and literature review
  - Consultation of end-users
  - Typology of environmental damage
  - Data collection for the 2 case studies




SPAQuE sa, 2006 (modified)

- Two study sites are selected with heavy CAH contamination for application of the integrated methodology:
- Zenne
- Morlanwelz


Here: exemple of the Morlanwelz site





FRAC-WECO for I-SUP-2008 Brugge University of Liège - April 2008

Preliminary results of solute transport with adsorption and degradation ...



# Conclusions (1)



- development of brownfields while preserving and restoring natural resources and ecosystems
- efficient remediation from a risk and economical point of view requiring prioritization :
  - (a) methodologies and norms;
  - (b) evaluation of the possible impact, by direct exposure but also, by dispersion in the environment, particularly through water resources;
  - (c) risk assessment for humans, natural resources and ecosystems;
  - (d) tools and methodologies for optimizing remediation measures.

# Conclusions (2)



- a methodology based on the 'Source-Pathway-Receptor' approach for conceptualizing the physical system and on the European Environmental Agency DPSIR concept for integrating the physical and socioeconomical components
- ongoing activities combining measurements and modeling for calculating water and contaminant fluxes from the contaminated sites at the catchment scale, including biogeochemical processes, retardation and reactivity of various contaminants
- In relation with groundwater vulnerability and ecotoxicological risk that must be taken into account for adequate management and cleaning

#### **THANKS to the Belgian Science Policy !**

FRAC-WECO for I-SUP-2008 Brugge University of Liège - April 2008

# FRAC-WECO Follow-up Committee

#### End-users

- OVAM (K.Van de Wiele)
- SPAQuE (H.Halen)



- IBGE (F.Onclincx)
- Scientific & Research Units
  - KUL (D. Springael)
  - FUSAGx (E.Haubruge)
  - CRP G.Lippmann EVA Luxemburg (L.Hofmann)
  - ULaval Québec (R.Therrien)
  - INRA Rennes France (L.Lagadic)
  - UParis VI France (M.Chevreuil)
  - UTübingen Germany (J.Barth)



### I. Role in the project

**VUB Partner** 

Prof. O. Batelaan, Department of Hydrology and Hydraulic Engineering (HYDR)
Prof. F. Canters, Cartography and GIS research group, Department of Geography (CGIS)

•Research on catchment scale water and contaminant budgeting and routing: involving remote sensing of land cover and groundwater recharge modeling, run-off routing, and uncertainty assessment

#### II. Activities of the partner

Two VUB-partners combine

remote sensing

HYDR: numerical modelling in hydrology Development, calibration and validation: rainfall-runoff, groundwater flow, water quality, integrated water management and ecohydrology

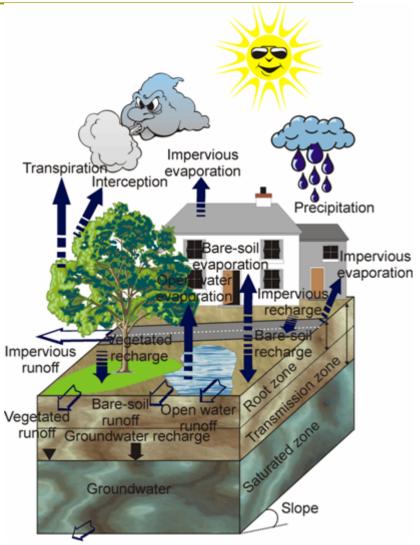
CGIS: mapping of land cover in urbanised areas with HR sensors: object-based classification, sub-pixel proportion mapping, uncertainty modelling

Added value of combining expertise shown in: modelling the impact of RS mapped impervious surfaces on runoff in the Woluwe catchment

### III. WP relevant activities for the project (1)

WP2: Catchment scale water and contaminant budgeting and routing

Task 2.1: High-resolution groundwater recharge simulation and surface run-off routing


- 1. Object-oriented land-cover mapping
- 2. Spatially distributed surface water budgeting
- 3. Multi-temporal analysis of water fluxes
- 4. Impacts of land-cover classification uncertainty

#### IV. WP relevant activities for the project

2

WP6: Test sites

Task 6.3 Applicat the integrated me to the test sites: Task 6.3 Application of the integrated methodology Zenne Morlanwelz



### V. Interaction with the other WPs and/or partners

VUB task in WP2: Catchment scale water and contaminant budgeting and routing is input to

Task 2.2 Variably saturated groundwater modeling of ULg-HG partner

VUB task in WP6: Contribution to interaction in testing methodology with all partners on test sites

I) Role in the project

Partner JL9-HG

**II)** Activities of the partner

**III)** WP relevant activities for the project (1)

IV) WP relevant activities for the project (2)

V) Interaction with the other WPs and/or partners

## I. Role in the project

- Partner JL9-HG
- Coordinating and managing the whole project
- Variably saturated subsurface flow modeling and transport modeling
- Development of a physically-based groundwater specific vulnerability and risk assessment method
- Data mining, acquisition and processing in relation with the test sites

### II. Activities of the partner

Partner OH-QJU 1- Characterisation, optimisation of field and labo measurements, modelling groundwater quantity and quality

2- Solute transport (tracers and reactive compounds) in saturated and partially saturated porous and fissured media

3- Interactions and coupling groundwater models with surface water and river models within integrated approaches

4- Hydrogeological vulnerability and risk mapping

5- Hydrogeological characterisation in semi-arid and arid regions

# 

• WP1: Project management and integration

Partne

OL9-HG

Task 1.1: Project coordination and management Task 1.2: Integration of process studies and tools with the socio-economical analysis Task 1.3: Links with stakeholders and decisionmakers

• WP2: Catchment scale water and contaminant budgeting and routing

Task 2.2: Variably saturated groundwater modeling

### IV. WP relevant activities for the project

Partnei OL9-HG

• WP4: Development of risk assessment tools and indicators

Task 4.1: Groundwater vulnerability mapping and flux-based risk assessment

• WP6: Test sites

Task 6.3 Application of the integrated methodology to the test sites

# V. Interaction with the other WPs and/or partners Partner

• ULg-HG task in WP1: Contribution to the management for interactions with all partners in developing methodology

• ULg-HG Task 2.2 - Variably saturated groundwater modeling (in WP2) is output to tasks of VITO, ULG-LEAE and BRGM partners

• ULg-HG task in WP4: Development of risk assessment tools and indicators will be defined in close collaboration with ULg-LEAE

• ULg-HG task in WP6: Contribution to interaction in testing methodology with all partners on test sites

OL9-HG

I) Role in the project

VITO Partner

**II)** Activities of the partner

**III)** WP relevant activities for the project (1)

IV) WP relevant activities for the project (2)

V) Interaction with the other WPs and/or partners

#### I. Role in the project

Identification/ quantification biogeochemical processes:

- contaminant degradation/ transformation during transfer (vadose zone, groundwater, sediment, surface water)
- fate of contaminants ~ changing environmental conditions
  - **CAH**, organochlorinated compounds, heavy metals, PAH, BTEX
  - Eh, pH, organic matter, redox conditions, micro-organisms
- degradation of pollutants along the flow path
  - monitoring of natural attenuation
  - (bio)stimulation of degradation

### II. Activities of VITO

480 researchers, 7 centers of expertise:

- energy consumption in processes
- new materials

Partner

VI TO

- environmental protection and innovation
- Environmental and Process Technology Center (MPT)
  - research in new soil remediation methods phytoremediation, ex-in-situ bioremediation, (enhanced) natural attenuation, physicochemical transformation of (in)organic pollutants (CAH, BTEX, heavy metals, PAH, MTBE, oil,...)
  - advice, evaluation and demonstrations for companies or governmental organizations

purification of waste water and ground water cleaning of soil and dredging materials

### III. WP relevant activities for the project

- Soil/water/sediment sampling (partly)
- Evaluation of pollutant degradation
  - Natural attenuation
  - Biostimulation

Partnel

- addition of carbon-sources (lactate, molasses, HRC,...)
- addition of electron-acceptors (NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup>)
- addition of nutrients (N, P, K)
- Bioaugmentation
  - characterisation of present bacteria (PCR, DGGE)
  - addition of degrading microorganisms

→ Batchtests, microcosms (oxic, anoxic)

### IV. WP relevant activities for the project

 Determination of relevant degradation parameters for modeling purposes

- $K_d$ , half life, break-through, ...
- input parameters for models VUB, ULg
- → Column tests

Partnel

5

Realistic in situ conditions !





# V. Interaction with the other WPs and/or partners

- Advice on soil/water/sediment sampling for modeling purposes
- Adivice on analysis techniques of organic, inorganic parameters
- Testsite Zenne, Vilvoorde:

Partner

VI TO

- Datasets on hydrology, geology, pollution concentrations
- ULg-LEAE: ecotoxicity of contaminants
  - microbial analysis ((Q)-PCR, DGGE, ...)
  - toxicity tests (Microtox, Cytotox, Vitotox)
- ULg-HG: flow modeling and transport modeling
  - existing groundwater and transport models of Zenne site
  - determining necessary parameters for use in transport/ degradation models via batchtests and column tests



I) Activities of the partner

**II)** Role in the project

**III)** WP relevant activities for the project (1)

IV) WP relevant activities for the project (2)

V) Interaction with the other WPs and/or partners

### I. Activities of the partner



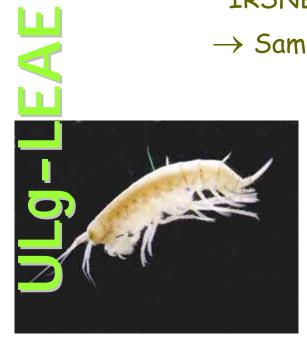
Laboratory of Animal Ecology and Ecotoxicology (LEAL) – Prof. J-P. Thomé

- $\rightarrow$  Expertise in fundamental and applied Ecology and Ecotoxicology
  - Study of energy and matter fluxes and transfer within aquatic freshwater ecosystems (particularly planktonic org.)
  - Ecotoxicological effects, fate and transfer of POPs (organochlorines: pesticides, PCBs,...)
  - Assessment of freshwater quality using
    - $\rightarrow$  bioindicator organisms
    - $\rightarrow$  biochemical exposure and effects biomarkers
- $\rightarrow$  The Laboratory entered the CART (« Centre for Analysis of Residues in Traces ») as an active member

### II. Role in the project

### Ecotoxicological approach

 $\rightarrow$ Study of contaminants


→Impact on species survival

### III. WP relevant activities for the project

#### **D** WP3:

Partne

- $\rightarrow$  Sampling ground- and surface waters
- → Sampling of subsurface representative organisms (collaboration with Dr. P. Martin, IRSNB)
- $\rightarrow$  Sampling sites
  - River Zenne, Morlanwelz, Chimeuse
    - Néblon (reference)



Niphargus virei

### IV. WP relevant activities for the project

- $\rightarrow$  Analysis of contaminants
  - Polychlorobiphenyls (7 standard and dioxin-like
  - PCBs) - Organochlorinated pesticides (lindane, DDT and
  - its metabolites)

Partnel

- Selected herbicides (Prof. E. De Pauw, ULg)
- $\rightarrow$  Ecotoxicological testing
  - Acute sensitivity of invertebrate organisms
  - using LC<sub>50</sub> determination approach
  - Chronic sensitivity of invertebrate organisms using EC<sub>50</sub> determination approach (e.g. pduction aspects).

etermine induction of biomarkers (EROD, 5T, AChE) activity in water organisms