

Study of air pollution dispersion in a street: case of Ho Chi Minh (Vietnam)

UNIVERSITÉ LOUIS PASTEUR STRASBOURG

<u>Nadège Blond</u>, Luis C. Belalcazar, Adil Rasheed, Alain Clappier, Sebastian Huttner, Michael Bruse

Objectives of LIV work on air pollution modeling

Understand processes driving air pollution over <u>urban areas</u>, human behaviour and the social context of these areas in order to optimize air pollution management.

Current projects:

- improve air pollution forecasts over cities (ex: Paris).
 - L. Menut LMD, INERIS (Paris), A. Clappier (EPFL).
- estimate population exposure to air pollution and health impacts S. Glatron - LIV (Strasbourg), D. Bard - EHESP (Rennes).
- understand vegetation ecological function (impact on air pollution).
 - C. Weber, A. Wania LIV (Strasbourg), M. Bruse (Univ. Mainz).
- improve estimate of traffic emission factors.
 - A. Clappier, L. C. Belalcazar, A. Rasheed LPAS (EPFL).

Numerical models running at LIV :

The chemistry-transport model CHIMERE (coordinator: L. Menut, LMD, Paris): http://euler.lmd.polytechnique.fr/chimere

Muti-scale model – runs over a range spatial scale from regions and urban areas.

The RANS model ENVImet (coordinator: M. Bruse, Univ. Mainz): http://www.envi-met.com

Studies over few streets.

110 35 25

Pictures taken from http://www.envi-met.com

CHIMERE validation using surface data

Comparison of CHIMERE with satellite data (collaboration with H. Eskes from KNMI)

Recent work: use of ENVImet to understand air pollution dispersion in a street in Ho Chi Minh (Vietnam).

Ho Chi Minh City measuring campaign January - March 2007

Conducted by A. Clappier et al., EPFL, Lausanne.

Objectives of the campaign: Identify the sources of pollutant. Estimate traffic emission factors (EF) as previously done in Bogotá (Zarate et al., 2007).

 $C_{I} = D^{*}Qs$ D computed using the model STREET D(z)=k(H-z)/[HW(u+0.5)]

Ba Thang Hai street

14 000 motorcycles/hour (95% of the fleet distribution)

Tracer liberation and measurements

(2) Tracer liberation: n-Propane from LPG (non toxic): 12 h/day, 30 days

(4) Meteorology

(3) Monitoring station: NO, PM_{2.5}, 18 VOC

(1) Traffic recording 24 h/day, 60 days

Comparison of propane concentrations when LPG was released (9 L/min) with normal background levels (0 L/min).

Hour

Setup of first ENVImet simulations

Horizontal resolution 4x4m²

Model initialization and simulations

Initialization of the model at 6h (local time) with **typical values** computed using the meteorological observations. $\Theta(z=2500m)=290K$, RH=50% Initial values: Tsoil/surface=25°C, Tinside-building=25°C

Runs for 24 hours. Spin up of 6h

Perpendicular wind of 3m/S

Y (m) : 144 T : 6 DATA SET: hcmc-cose1_otm 110 **Reference** case 100 90 25 -80 70 60 E N 50 15 -40 30 20 5 -10 120 100 110 130 140 150 160 X (m) R_U, R_W---> 1.00 C POLLUTANT (ug.m-3)

Consistent wind flow.

Windward side:

Near sources, concentrations in the range of what we should have on the other side of the street

Leeward side:

Low concentrations. Factor 10 compared to the observations.

FERRET Ver. 6.07 NOAA/PMEL TWAP Arr 21 2008 15:13:50

0

Differences observations/simulations? Rôle of turbulent diffusion? Rôle of thermal effects? Rôle of the trees?

Sensibility studies to input parameters which can influence the turbulent diffusion, thermal effects or the trees effects.

Modified input parameters:

- potential temperature in 2500 m height (start value for all layers, fixed at 2500m but re-calculated below)
- Initial surface temperature of surfaces and soil
- Initial inside temperature of buildings
- wind direction (fixed value during the simulation)
- wind speed (fixed value during the simulation)
- leaf area density of the trees

Changes in potential temperature in 2500m height-

DATA SET: hcmc-cose1_atm

Changes in wind direction

DATA SET: hcmc-cose1_otm

Changes in wind speed

FERRET War. 8.07 NOWA/PMEL TWAP Apr 22 2008 13:35:32

DATA SET: hcmc-cose1 otm

Changes in leaf area density

FERRET War: 8.07 NGAA/PMEL TWAP Apr 22 2008 13:32:34

DATA SET: hcmc-cose1_otm

Conclusions

⇒The sensivity studies performed with ENVImet didn't help to understand air pollutant dispersion in the BTH street.

Turbulent diffusion and thermal effects cannot explain differences between observations and simulations.

⇒ The most important factors which influence the concentrations are:

- Wind speed
- Wind direction.

 \Rightarrow Less important factors which influence the concentrations are:

- Potential temperature in 2500 m height
- Initial temperature of surface/soil.
- Initial inside temperature of buildings.
- Leaf area density of the trees.

Perspectives

Preliminary study, more tests are needed

⇒ Modify the geometry of the street to be closer to the reality. Different flow regime?

 \Rightarrow Look at the impact of spatial resolution.

⇒ Add traffic-induced turbulence and test its impact on the dispersion.

 \Rightarrow Change parameters from one hour to the other to be closer to the reality.

⇒ Make tests on other streets where we have more climatological data:

- Basel
- Lausanne

⇒ Check the impact of the trees.
Surprising small effects...

Thank you for your attention

Thanks to Jo Vliegen, Stijn Jansen and Koen De Ridder to give us access to their linux version of ENVImet.

Luis Belalcazar Alain Clappier