

Voltage Dips and Converter-Connected Distributed Generation Units

Bert Renders

Ghent University Departement of Electrical Energy, Systems and Automation (EESA) Electrical Energy Laboratory (EELAB)

> 24 April 2008 ISUP08

Overview

Converter-Connected DG units

- Full-Bridge Converter
- Control Strategy
- Voltage Dip Ride-Through Capability
 - Instantaneous Reaction
 - Bus Voltage
- 3 Retained Voltage

4 Conclusions

Full-Bridge Converter Control Strategy

Full-Bridge Converter

Topology of the active front-end of the DG unit

Image: 1

Full-Bridge Converter Control Strategy

Control Strategy

Full-Bridge Converter Control Strategy

Control Strategy

Image: 1

Full-Bridge Converter Control Strategy

Control Strategy

4 D b

Full-Bridge Converter Control Strategy

Control Strategy

Full-Bridge Converter Control Strategy

Control Strategy

1

Full-Bridge Converter Control Strategy

Control Strategy

Image: A to the second seco

Overview

Converter-Connected DG units Full-Bridge Converter Control Strategy

2 Voltage Dip Ride-Through Capability

- Instantaneous Reaction
- Bus Voltage

3 Retained Voltage

4 Conclusions

Instantaneous Reaction Bus Voltage

Instantaneous Reaction

- Before dip initiation: $P_{dc} = P_{ac}$
 - P_{dc} Power delivered by the DG-unit
 - $P_{\rm ac}$ Power injected by the converter into the utility grid
- At dip initiation: $P_{dc} \neq P_{ac}$
 - Power excess is absorbed in the bus capacitor
 - Bus voltage variation
- Main reason for shutdown: excessive bus voltage
- Experimental results:
 - $\dot{l_{ ext{L}}} \stackrel{.}{pprox} g \sin(heta_{ ext{PLL}}) + g_{ ext{h}} \left(oldsymbol{v}_{ ext{g}} \sin(heta_{ ext{PLL}})
 ight)$
 - P_{ac} is higher as compared to the 'classical' control strategy.

Instantaneous Reaction Bus Voltage

Bus Voltage Controller

- The bus voltage controller starts to adapt *g* in order to restore the power balance
- After three net periods, the currents of the converters with different control strategies are equal again.
- Due to current limitation, the bus voltage controller cannot always balance the incoming and outgoing power.
 - Especially during deep voltage dips.
 - Bus voltage keeps rising until the dip disappears, or until the converter shuts down.

Instantaneous Reaction Bus Voltage

Experimental Results: 1000 W

Image: Image:

Instantaneous Reaction Bus Voltage

Experimental Results: 500 W

Image: Image:

Overview

- Converter-Connected DG units
 Full-Bridge Converter
 Control Strategy
- Voltage Dip Ride-Through Capability
 - Instantaneous Reaction
 - Bus Voltage

3 Retained Voltage

4) Conclusions

< □ >

Voltage Dip Ride-Through Capability Retained Voltage Conclusions

Model of a Radial Feeder

Active and reactive power of the loads in nominal conditions

	POC1	POC2	POC3	POC4	POC5	POC6	POC7	POC8	POC9	POC10
P [KW]	5	7	3	4.5	9	10	3	1	2	5
Q [KVAR]	1	0.5	0.2	3	0	0	1	0	4	2

Schematic overview of the distribution feeder

Thévenin Equivalent Model

The converter reacts according to:

$$f_{L}^{*} = g \sin(\theta_{PLL}) + g_{h} \left(v_{g} - \sin(\theta_{PLL}) \right)$$
 (1)

The corresponding Thévenin equivalent is given by:

$$\overline{Z}_{DG} = \frac{1}{g_{h}}$$

$$\overline{E}_{DG} = \frac{g_{h} - g}{g_{h}} V_{g}^{nom} e^{j\delta}$$
(2)

Setting g_h to zero yields a model for the sinusoidal convertor.

Overview

- Converter-Connected DG units
 Full-Bridge Converter
 Control Strategy
- Voltage Dip Ride-Through Capability
 - Instantaneous Reaction
 - Bus Voltage

3 Retained Voltage

4 Conclusions

Image: Image:

Thanks to the implementation of the damping control strategy:

- Reduced bus voltage variations
- Converter-connected DG units have a better voltage dip immunity.
- Converter-connected sensitive equipment can be protected as well.
- Additional power is injected in the grid during dips.
- Retained voltage is kept higher.

Power Quality improvement as secondary function can be implemented without violating the primary function of the device.