

Energy research Centre of the Netherlands

A <u>Complex Harmonic Impedance Measurement</u> (CHIME) System for Reduction of Harmonics in the Electricity Grid

Peter Heskes

24 April 2008

technische universiteit eindhoven

The EOS LT project KTI is funded in part by SenterNovem

Contents

Introduction The CHIME-system Fast Fourier Transformation Lock-in principle Simulation and results Cooperation of multiple CHIME-systems Conclusions / Plan of action

Introduction

Problem

• harmonic mitigation systems need impedance information, for adaptation to local grid situations

Goal

- find an impedance measurement system, able to work in practical situations
- implement this system into a Digital Signal Processor (DSP)
- integrate this into a grid connected Power Electronic Converter

Approuch

• developement of a Complex Harmonic Impedance Measurement system, able to cope with these demands (the CHIME-system)

Characterisations of the CHIME-system

The CHIME-system:

- estimate the small signal grid impedance of a number of harmonics
- does measurements while the grid is operating
- has an acceptable level of current emission
- can cope with changing load conditions
- has a cooperation algorithm for multiple CHIME-systems
- can be implemented in a Digital Signal Processor (DSP)

Principle of the CHIME-system

TU/e technic

technische universiteit eindhoven

- collect time series of voltage and current
- does transformation to frequency domain
- calculates the impedance spectrum

technische universiteit eindhoven TU/e

Current injection of the CHIME-system

ECN

 $F_{measurement} = hF_{fundamental} + F_{shift}$

h = harmonic number

Properties of the injected current signal:

- freq. in between harmonics of the grid
- waveform close to a saw-tooth
- emission complies with IEC 61000-3-2

Calculation part of the CHIME-system

The CHIME-system:

- combination of a Lock-in and Fast Fourier Transformation (FFT) system
 - Lock-in method for the fundamental impedance
 - FFT for harmonic impedances

Fast Fourier Transformation (FFT)

From function of sample time $f(kT_s)$ to function of frequency $f(F_0n)$

Fast Fourier Transformation (FFT)

From function of sample time $f(kT_s)$ to function of frequency $f(F_0n)$

$$c_n = |c_n| e^{j\Phi_n}$$

FFT and the Lock-in principle

Lock-in system: optimized for estimation of one single coefficient C_n

FFT system: estimation of total number of N coefficients C_n

Resolution of the FFT (and the Lock-in)

simulation of the Chime-system

The measurement system is connected to a low-voltage grid

 $Z_{grid} = 0.4 + j0.25\Omega$ and $Z_{load} = 23 - j100\Omega$ at 50Hz

simulation of the Chime-system

Grid voltage conditions:

- THD of 8%
- added white noise
 of 1%
- frequencies varying ±1%

polluted grid voltage, to create a worst-case situation

simulation results

simulation results

St

CHIME-system, cooperation of multiple_systems

Conclusions

The CHIME system works with two optimized systems, namely:

- a Lock-in system for the fundamental impedance
- a FFT system for harmonic impedances

Reason for the split:

• estimation of fundamental impedance ask for much more resolution

Simulations show that the CHIME system is capable of operating under polluted grid voltage conditions

Plan of action

The CHIME system will be:

- implemented in a DSP of a grid connected Power Electronic Converter
- tested in a laboratory and real grid

Thank you for your kind attention