Zeolitic-nanoblock membranes for gas separation

<u>K. Wyns</u>, A. Buekenhoudt_(VITO) J. Martens, P. Jacobs (KULeuven) J. Denaeyer, G. Baron (VUBrussels) D. Liang, G. Van Tendeloo (UAntwerpen)

SBO Project funded by IWT

Membrane synthesis

• Standard zeolite membranes :

hydrothermal synthesis

with in-situ growth, or seeding and secondary growth

• Our method :

stacking from nano zeolite-precursors from clear solution

Nano zeolite-precusors

R&D in different groups :

[Tsapatsis], [Schoeman], [Corma], [Martens] :

- In clear solution
- With specific ratio of TPA/SiO₂ in solution
- Existence of precursor nanoparticles of a few nm by SAXS, DLS, TEM, HRTEM, AFM
- Contribute to crystal growth by oriented aggregation
- Structure of precursors in debate :

amorphous or crystalline ?

Nano zeolite-precursors

• TEM on silicalite clear solution, aged at RT (UAntwerpen)

D. Liang, Van Tendeloo et al, submitted J. Phys. Chem. C.

Nano zeolite-precursors

• TEM on silicalite clear solution, aged at RT (UAntwerpen)

D. Liang, Van Tendeloo et al, submitted J. Phys. Chem. C.

Zeolitic nanoblocks

View of K.U.Leuven

Kirschock et al., Angewandte Chemie, 40, 2637; 2001

- Basic unit = rectangular nanoblock
- Nanoblocks have zeolite-like properties = zeolitic
- Nanoblocks are 4x4x1.3 nm³
- Can be used as building units

- 9 short zig/zag channels along a-axis
- 3 long,straigth channels along b-axis
- channels 0.5 nm wide

Zeogrid powder

Kremer at al., Adv. Funct. Mater., 12, 286, 2002 (KULeuven)

- Nanoblocks can be stacked in an layered way with the use of appropriate surfactants
- Leads to micrometer large grains called zeogrid
- Zeogrid calcined has dual porosity : micropores + interblock voids

Zeogrid powder

N₂ adsorption : **bi-porosity** micropores + supermicropores

Low-angle XRD : **no zeolite** layering with repetition of 3₁nm

sample	V(micro) cc/g	V(big micro) cc/g	S(tot) m ² /g	
СТАВ	0.14	0.53	1243	
DTAB	0.14	0.40	948	
 i-SUP2008				8

Zeotile powder

Kremer at al., Adv. Mater., 20, 1705, 2003 (KULeuven)

Different way of stacking with the aid of surfactants : \downarrow Hexagonal stacking of double nanoslab units \downarrow One dimensional channels of ~3.5 nm

White bar = 10 nm Images: UAntwerpen

Zeolitic-nanoblock membranes

Zeogrid on porous support :

dipping in solution of nanoblocks + surfactants

Calcination = removal of surfactant/TPA, no crystal growth

Zeolitic-nanoblock membranes

Possible advantages :

- thin membranes < 100 nm : high flux, crack free
- bi-porosity : extra high flux
- defect-free + entrance via nanoblock : high selectivity

Goal : Potential of these membranes ?

Preliminary tests : Zeolitic-nanoblock film on Si wafer

Zeolitic-nanoblock membranes

Zeogrid layer on porous support :

- flat and tubular
- α-Al2O3/TiO2 (50-100 nm) + TiO2 (3 nm)

Quality test :

- NF with small PEG's in water (200, 600, 1500 Dalton)
- defect-free membrane has MWCO < 200 D + low flux
- R(1500D) measures defects and supermicropores > 1.5 nm

Current quality on tubes :

• MWCO : 500 à 1000 D, R(1500D) > 95%

FESEM characterisation

on a fracture plane, 30° tilt

TEM characterisation

Adsorption measurements on zeotile/zeogrid powder at RT

Adsorption measurements on zeogrid powder at RT

powder interesting as CO₂ adsorbent

Measurements: VUB

membranes interesting for CO₂ gas separation

Single gas separation measurements

aoc	Permeability at RT	Permeability at 200°C
yas	(l/hm².bar)	(l/hm².bar)
N	M1 : 1290	M1 : 1800
IN ₂	M2 : 4500	M2 :
СЕ.	M1 : 960	M1 :
Sг ₆	M2 : 1950	M2 :
Ц	M1 : 4200	M1 : 5850
п ₂	M2 : 11700	M2 :
<u> </u>	M1 : 1500	M1 : 2100
UU_2	M2:3300	M2 :

- permeabilities independant of TMP
- 1000 l/hm²bar = 1,24 10⁻⁷ mol/m²sPa

- ~ Knudsen permselectivities
- permeabilities increase with T

Double gas separation measurements

gas	Selectivity	Permeability at RT (l/hm².bar)
N ₂ /CO ₂ 88/12	0.6 (1.25)	3000
H ₂ /CO ₂ 40/60	1.7 (4.7)	9000

Permeate side : P = 1 atm TMP = 1 or 2 bar CO₂ adsorption High fluxes Low selectivities

Conclusions for zeolitic membranes

- SEM/TEM show nice membranes with clear bi-porosity
- Current quality : 500 à 1000 D, R(1500D) > 95%
- Adsorption on powder shows extra high CO₂ capacity at high pressures : <u>clear potential</u>
- First gas separation results :
 - Single gas separation shows
 - ~ Knudsen behavior, high fluxes increasing with T
 - Double gas separation at low pressure shows
 CO₂ adsorption, high fluxes
- Gas separation measurements at high pressure planned

