FROM INDUSTRIAL WASTE WATER AND CONTAMINATED GROUND WATER ON THE EXAMPLE OF EDTA Van Daele D.¹, Sörensen M.² and Weckenmann J.²

¹ a.c.k. aqua concept Benelux, representation for a.c.k. aqua concept GmbH, Slotgrachtstraat 5, 9940 Evergem, Belgium, dvandaele@ack-aquaconcept.com, Telephone: +32 (0)9 3445176, Fax: +32 (0)9 3445176

² a.c.k. aqua concept GmbH, CEO's, engineering, design and production of UV disinfection and oxidation processes, Wikingerstrasse 9A, 76189 Karlsruhe, Germany.

22-25 april 2008

Problem definition

- Protection Ground water layers (EU)
 - ✓ Dehydration due to intensive pumping
 - ✓ Degradation of the water quality
- Industry is looking for alternatives for their water supply
 - ✓ Surface water
 - ✓Reuse process water, waste water
 - ✓ Rainwater
- Clean up of contaminated soil and related ground water

aqua concept karlsruhe

Chelators, organic micro pollution, persistent components are the cause and the effect of the problem

Example EDTA

Pateted in Germany 1935 by F. Munz

- Widely USED as complexation agent, anti coagulant in
 - √Personal care products
 - ✓ Pharmacy
 - √Surface treatment
 - √Food
 - ✓Paper industry etc.

Properties

- ✓ Strong chelating properties
- ✓ Non toxic (overall), other chelators are toxic (cyanide, polyamines a.o.)
- ✓ Persistent

Environmental behavior

- ✓ Slow removal under many environmental conditions, accumulation
- √The most abundant anthropogenic compound in surface water
- ✓ Low concentration can either stimulate or decrease plankton and algea growth.
- ✓ In elevated concentrations toxic to bacteria and mammals (high concentrations)

i-sup 2008 Brugge

Langjährige Entwicklung EDTA

M. Lehmann November 2004

Conventional treatment Physical separation

EDTA is not degraded or removed in conventional waste water treatment

- Precipitation
 - ✓ Not possible, strong chelating properties, used as anti-coagulant
 - √ Metals are remobilized from the sludge
 - ✓ Bad performance, effluent specifications not kept
- Filtration, Ion-exchange
 - ✓ Concentrated waste stream, can not be discharged without treatment.
- Recovery
 - ✓ High costs, bad quality after recuperation
 - √ High emissions, safety precautions necessary
- Activated carbon
 - √ Production of AC is energy consuming
 - √ Not reliable due to competitive components
 - √Waste stream (burning or regeneration necessary)
 - √ For EDTA AC is useless due to its hydrophylic character

a.c.k.

Conventional treatment Oxidation processes

EDTA is not degraded or removed in conventional waste water treatment

Biology

✓ Recalcitrant, due to strong metal chelating properties. Other chelates toxic.

Electrolyses (AOP)

- √ Recuperation of metals OK
- ✓ Chelate changes into other forms (EDTA → EDDA-N,N, EDMA, IMDA) with same properties
- √ Energy consuming
- ✓ High investment costs
- √ Creation of high sludge amounts
- √Corrosion problems

Chlorination

√ Formation of persistent by-products (AOX)

Ozon

- √Is dangerous product, must be destroyed by UV
- ✓Ozon doesn't or slowly reacts with amines, in the case of EDTA, destruction of Ozon
- ✓ Formation of by-products (e.g. Formaldehyde)

í-sup 2008 Brugge

Comparison in EDTA degradation speed with different techniques

a.c.k. AOT = Enviolet® systems

a.e.k.

New treatment ENVIOLET®-systems

EDTA degrades and can be removed due to smart UV-systems

0 h Enviolet®

Highly diluted sample

EDTA – metal bath

2 h Enviolet®

Diluted

4 h Enviolet®

Undiluted

i-sup 2008 Brugge

SMART ENVIOLET®-systems

- Enviolet® UV oxidation process → Cold combustion in the water phase. Chelates (EDTA tartrate, citrate etc.) → CO₂
- Enviolet® basic equipment:
 - > Batch tank
 - Enviolet® UV-reactor(s)
 - Dosing station(s)
 - Control panel pt karlsruhe

A combination of High performance Enviolet® UV reactors and fully automated intelligent designed process control, results in an innovative UV technology.

SMART ENVIOLET®-systems

- The abrasive rotational flow in the reactor
- A very good material transfer, guaranteed by the induced high turbulence, even in very dirty and turbid media (optimisation of the process)
- The high quality of the chosen components

Application examples ENVIOLET®-systems

- Flexible and compact
- Applicable:
 - ✓ for small and big flows.
 - ✓ for liquids with low UV transmission and high concentrations of suspended solids (e.g. sludge)
 - √ for corrosive streams
 - ✓ for different waste streams in combination or in successive batch treatment
- Energy and water recuperation possible
- Improvement of product quality and at the same time prevention of waste water.

Testing

The way from lab-test work to full-scale UV-applications

UV-treatment a.c.k. Laboratory PVP-waste water

•Diagram 1: Laboratory treatment. TOC-degradation by UV-oxidation and subsequent biological elimination (Z/W-Test after 2 d)

The way from lab-test work to full-scale UV-applications

UV-treatment a.c.k. Laboratory PVP-waste water

•Diagram 2: Pilot-operation by the client (a.c.k. pilot plant). Comparison of the degradation by the laboratory scaled facility and the pilot plant

The way from lab-test work to full-scale UV-applications

Wastewater treatment UV Reactor Enviolet® (a.c.k. aqua concept GmbH)

TOC Analyses Divergan wastewater F 414 S

Flexible and compact

Application examples ENVIOLET®-systems

Enviolet®- UV - Reactors

Upgrading without additional space

a.c.k.

i-sup 2008 Brugge

Application examples ENVIOLET®-systems

for small

and

big flows

Application examples ENVIOLET®-systems

precipitation after Enviolet® treatment,
samples shown are without addition of coagulant
Formation of a very dense, compact sludge

Application examples ENVIOLET®-systems Surface finishing

Table I: Chemical composition of the waste streams of treatment processes in surface finishing

Process	Chelators	Classical treatments	Modern Enviolet® method
Electroless Nickel	Organic carbonates, ammonia	Rinse waters only	Rinses & concentrates e.g. Enviolet®
Electroless Copper A	Organic carbonates (tartrate, citrate)	Rinse waters only	Rinses & concentrates e.g. Enviolet®
Electroless Copper B	Polyaminocarboxylate(EDTA & other complexes)	Already difficult for rinse waters	Rinses & concentrates e.g. Enviolet®
Zinc-Nickel	Polyamines (EDTA, cyanide & other complexes	Already difficult for rinse waters -	Rinses & semi concentrates e.g. Cyanomat®
Cyanide	Cyanide	Good to satisfactory	Rinses & concentrates e.g. Cyanomat®

Application examples ENVIOLET®-systems Surface Finishing

Table II. Gives an Overview of the described case study plants and waste water produced.

User	Waste water source	Method of treatment
Multilayer Technologies (PCB – manufacturer)	Electroless copper rinses & concentrates	Batch
FUBAG (GMF)	Cyanide baths & waste water Electroless nickel	Sequential s r u h e
Thoma Metallveredelung (metal finishing)	Electroless Nickel & Zinc/Nickel	Alternating

Application examples ENVIOLET®-systems Surface Finishing

Table III. Contents of the electroless CuEDTA bath and levels at Multek after treatment with the a.c.k. UV-process.

Conce	Concentration after alkaline precipitation	
Copper	5,000 — 6,000	$0.2 - 0.5 \text{mg/dm}^3$
Na-EDTA	25,000 – 35,000	< 10 μg/dm³
Formaldehyde	6,000 a a d	ua concept <i>n.n.</i> arlsruhe
COD	43,000 – 60,000	Approx. 1,000 mg/dm³
TOC	14,000 — 20,000	

Table IV: Waste water configuration at FUBAG, metal plating AG (CH)

Parameters	Waste water		After treatment	
Waste water in m3/d	5	, f	5	
Cyanide in mg/L	6.500 - 10.000		< 0,2	
Copper in mg/L	approx. 5.000		< 0,3	
Nickel in mg/L	10.000 – 15.000		<0,25	
Zinc in mg/L	approx. 1.000		< 0,4	
Silver in mg/L	approx. 10		< 0,1	
Gold in mg/L	traces		n.d.	
Treatment time	4,5 h			
Color	brown-green		clear	

Table V. Effluent streams and the important chemical components at Thoma Metallveredelung

Total volume of the batch:12 m³	Proportion in batch in m³	Chelates in effluent	Concentration chelates in mg/dm³
Electroless nickel	4-5	Carboxylates, Gluconates	1,000 – 4,000
Zinc pickling	2	Aromatic Carboxylates	1,000 - 2,000
Acid pickle (HNO3)	2	Ammonium, carboxylates	max. 500
Ammoniumbifluoride	2	Ammonium	2,000 - 3,000
Zinc – nickel	9	Aminocarboxylates, Cyanides	Approx. 8,000

Ni or Cu plating process by means of electrolyses

- Energy and water recuperation possible
- Improvement of product quality and at the same time prevention of waste water.

i-sup 2008 Brugge

Improvement of product quality Recuperation of metal and water Prevention of waste water

uv bath conditioning

Comparison between old AC technology and new Enviolet® technology

a.c.k.

Application examples ENVIOLET®-systems

- for different waste streams in combination
 - ✓ Antibiotics and X-ray waste

or in successive batch treatment:

- ✓ Cyanide detoxification
- √ Ni phosphite
- √ Oil emulsions
- At the same time flexible and compact

Application examples ENVIOLET®-systems

• for different waste streams such as waste gas (e.g. VOX, NOx removal)

EDTA removal at producer

The producer of EDTA compared different technologies, The focus was:

- simple process
- Selective to keep the operational costs low.
- By-products are biological available

Table VII: Resume of the assignment and waste water specifications

Parameters			
Flow in m3/h		8 - 12 m3	
EDTA-Konzentration		400 - 500 mg/l	
Other components		org. by-products ca. 0,3% Na ₂ SO ₄ ca. 18,5 % COD a quea. 2000 – 3000 mg/l l s r u h e Chloride im ppm-range	
Waste water temperature		30 - 40 °C	
Degradation rate EDTA		> 50 %	
Costs in Euro/m3	-	< 0,5	
pH-Value	-	1,5 - 2	

Groundwater and remediation applications

Enviolet® is a powerful instrument for elimination of PAH, VOCI, cyanide etc.

i-sup 2008 Brugge

22-25 april 2008

Conclusion

- Enviolet®-UV-technology is an effective technology in a wide range of small and large applications in different industries.
- It is economical feasible, were other cheaper methods fail or were other methods need to be helped to come to the final results.
- The Enviolet®-systems are well engineered compact, flexible systems, which can be used for several problems as stand alone or combined with other technologies as there is:
 - ✓ energy recuperation,
 - ✓ water recuperation,
 - ✓ product recuperation and or product quality improvement.

With thanks to the owners of the Enviolet® technology Dr. Ing. Martin Sörensen Dipl. Ing. Jürgen Weckenmann

