Applications of Organic Solvent Nanofiltration in the Process Development of Active Pharmaceutical Ingredients

Johnson-Johnson HARMACEUTICAL RESEARCH & DEVELOPMENT Intellog of JANESS PARAMACEUTICA

- Introduction
- A non-thermal solvent exchange.
- Removal of Excess reagents via OSN.
- Reaction product purification.
- Removal of oligomers from a reaction mixture.

Applications of Organic solvent Nanofiltrations

•Solvent operations

- Concentration of solutes in solvents
- Solvent exchanges (high boiling solvent to low boiling solvent)
- Purifications separation of high and medium MW species in solvent.
- Catalyst recyle and reuse
- Dynamic kinetic resolution
- Chiral separations (host-guest interactions)
- Biotransformations

•Solvent switch $H_2O \rightarrow acetone$

Problem

- Synthesis of 1 carried out in H₂O
- Following synthetic step performed in acetone,

for which it has been determined that H_2O content must be less than 1%.

- Under standard distillation conditions 1 undergoes rapid degradation.
- Loss of 1 is typically 20% but can be as high as 40%.

	origin	1 (g)	H ₂ O wt/wt %
Mater evolution and for exectors at reason	sm	11.5	/
tomporeture	permeate 1	0.2	6.95
	permeate 2	1.0	4.84
Solute : 1.21 EA salt MW salt = $3/6$	permeate 3	0.9	3.82
(free acid 174)	permeate 4	0.5	1.91
pressure 20 bar, Starmem 120	permeate 5	0.6	0.92
(MWCO = 200 Da)	permeate 6	0.6	1.05
Yield 1 in acetone 75%	retentate	8.6	0.76

+ ve	- ve
 Exchange high boiling point to low boiling point solvent easy 	-Long term membrane stability after 6 days in contact with the triethylamine salt of 1 membrane degradation observed
- Yield of 1 is competative with present distillation process	- More stable crosslinked membrane (MWCO = 230) didn't work rejection of 1 was almost 0
- Chemical purity is better with nanofiltration as no dergadation of 1 was observed	- Use of free acid as solute and an RO membrane failed rejection of 1 was 69%

•Transesterification reaction from a methyl ester to a benzyl ester in a molecule whose functionality amongst others includes a secondary alcohol.

Problem

 Reaction require a large excess of Benzyl alcohol

• Excess Benzyl alcohol must be removed prior to the following synthetic step

• Options to remove benzyl alcohol.

- **Chromatography** : works well but requires a large quantity of silica.
- Nanofiltration

• Direct OSN of the reaction mixture.

membrane	Pressure (bar)	Flux (L m ⁻² h ⁻¹)	Rejection (product)	result
Starmem – 120 (MWCO 200)	20	14	50%	Insufficient separation of benzyl alcohol and product

• OSN of reaction mixture after acylation.

impurity A + impurity B +

372

 $M.W = (R_1=CH_3)$ 320 $(R_1=CH_3CH_2)$ 334

(R₁=CH₃CH₂) 164

R ₁	membrane	Pressure (bar)	Flux (L m ⁻² h ⁻¹)	Rejection (acylated product)	Result
CH3	Starmem – 120 (MWCO 200)	20	24	85%	Benzyl ester separated from acylated product, impurities
CH3CH2	Starmem – 122 (MWCO 220)	20	48	90%	remain

Yield acyl ester in the retentate (R = CH3CH2) = 88%

Impurities A and B can be removed with a second filtration over a membrane with MWCO = 400

Development

Page 14

•OSN after selective oxidation.

+ impurity A + impurity B

M.W = 278

372 354

membrane	Pressure (bar)	Flux (L m ⁻² h ⁻¹)	Rejection (product)	Rejection (impurity A)	Rejection (impurity B)	result
Starmem – 122 (MWCO 220)	20	7	67%	92%	100%	Product obtained in the permeate not 100% pure

• Summing up.

Removal of excess benzyl alcohol

- Failed directly on reaction mixture.
- Possible on product after further transformation 2 filtration steps required.

 Possible after oxidation process.
 Product obtained in the permeate Not 100% pure

Example 3 : Reaction product purification

Example 3 : Reaction product purification

- A reaction that failed gave a mixture of product MW = 200 and a dimer MW = 368
- Reaction mixture can be purified by chromatography but not used here.

membrane	Starmem 122 (MWCO 220 Da)			
solvent	Toluene	methanol		
Pressure (bar)	20	10		
Flux (L m ⁻² h ⁻¹)	1.7	3.6		
Dimer rejection	96%	87%		

Removal of dimer from product

	GC area %			
	product	RRT1.13	Dimer	
starting material	56.1	*	36.9	
toluene permeate	95.6		1.8	
methanol permeate	91.9	1	4.6	
retentate	42.8	4.9	47.8	

Problem :

- Organometallic reaction that is an equilibrium reaction.
- Reaction produces product (MW 670) and a number oligomers with MW > 1000
- Quantity of oligomers can be as high as 20%
- Oligomers are difficult to analyse and are not visible using HPLC
- These oligomers block the active sites of silica and thus prevent automated chromatographic techniques.

Removal of oligomers

membrane	Desal GH (MWCO 1000 Da)				
solvent	Acetic acid		Analysis resu	ults wt/wt%	
Pressure (bar)	22	purification	product	rest	oligomers
Flux (L m ⁻² h ⁻¹)	7.7	none	63	21.7	15.3
Rejection product	97%	crystallization nanofiltration	78 83	13.9 10.1	8.1 6.9
Yield isolated product	30%				

Membrane-extraction-technology results

membrane	Desal GH (MWCO 1000 Da)	MET-L3431H (MWCO 700 Da)
solvent	Acetic acid	THF
Pressure (bar)	22	30
Flux (L m ⁻² h ⁻¹)	7.7	87
Rejection product	97%	89.5
Diafiltration volume	/	35
Yield isolated product	30%	98.5
		ChemPha Develop

Removal of oligomers

MET process development

Summary

- Nanofiltration over Solvent Resistant Membranes offers several opportunities for use in scale up.
- Technique is complementary to other separation techniques already available
- Scale-up is relatively easy
- Solvent/energy use is potentially low.

Acknowledgements

- Dirk Lauwers
- Tom Dedroog
- Membrane extraction technology

