

Green Ultrafiltration Membranes

Y. Medina-Gonzalez, J.C. Remigy*

Laboratoire de Génie Chimique, Toulouse, France

remigy@chimie.ups-tlse.fr

Contents

- 1. Membrane Processes
- 2. Legal Context
- 3. Green Solvents
- 4. Phase Inversion Process
- 5. Phase Inversion Process: Hollow Fiber Fabrication
- 6. Phase Inversion and Green Materials
- 7. Results
- 8. Green Solvent Recovery / Water Recycling
- 9. Conclusions
- 10. Prospects

Membrane Processes

Membrane: barrier, selective.

- Appreciable energy savings

- Environmentally benign

- Greater flexibility in designing systems.

- Clean technology with operational ease

- Produces high quality products

- Replaces the conventional processes

Uses: Waste water treatment, separation of biological active components, refining of oils, gas separation **Membrane fabrication:** Solvents, pollutants wastes.

Legal Context

Human health impact Ecosystems impact Greenhouse gas production Global warming

Green production processes

Most recent European Environmental Law: REACH (November 17th 2005)

The industries must prove the non-toxicity of their materials.

Green Solvents

Substitution of dangerous materials by green materials.

Green Solvents§ Non toxic Non volatile From renewable resources

§ **P. T. Anastas**, ACS Symposium Series 819, American Chemical Society, Washington DC. 2002, pp. 1-9.

Green solvents

Solvent	LD50	Vap. Pressure	Risks	
Cyclohexane	Oral rat 12.7 g/kg Oral mouse 0.8 g/kg	96.8 mmHg at 20°C Mutagen		
DMSO	Oral rat 14.5 g/kg	0.42 mmHg at 20°C	Mutagen/Tumorigen	
Acetone	Oral rat 5.8 g/kg	181 mmHg at 20°C	Highly flammable	
Chloroform	Oral rat 1.2 g/kg Oral mouse 0.08 g/kg	158.3 mmHg at 20°C	Mutagen, teratogen	
NMP	Oral rat 3. 9 g/kg Skin rabbit 8 g/kg	0.5 mmHg at 25°C	None	
Ethyl lactate	Oral rat 5 g/kg Oral mouse 2.5g/kg	5 mmHg at 30°C	None	
Methyl lactate	Oral rat 2 g/kg	2.6 mmHg at 20°C	None	

April 22-25, 2008

Phase inversion Process

LiCI, PVP NMP, DMF, DMSO, acetone, cyclohexane, chloroform... Cellulose acetate: water treatment membranes, from renewable materials. Polymer + Non-solvent of the (Solvent must solvent + polymer, miscible solubilize porogen with the solvent polymer and on dope solution porogen) Flat sheet Immersion on a Casting on a membrane coagulation bath glass plate **Dope solution** Waste Innovation for Sustainable Production 2008 **April 22-25, 2008**

Phase inversion Process: Hollow Fiber Fabrication

April 22-25, 2008

Phase Inversion and Green Materials

S	Material	Water Soluble	Solvent Soluble	Solubilizes cellulose acetate	Natural	Suitable for green membranes?
OLVENTS POROGENS	Methyl Lactate	✓		√	√	YES
	Ethyl lactate	✓		√	✓	YES
	NMP	✓	# 1 T	√	×	NO
	DMSO	✓	18-67	✓	×	NO
	PVP	✓	✓	Winds I	×	NO
	LiCI	✓	√		√	YES
	CaCl ₂	✓	✓	Car Land	1	YES

Phase inversion and Green Materials

Green solvents must solubilize the polymer and the porogen

Green solvents must be miscible with the coagulation bath (currently water)

Methyl lactate
Ethyl lactate
CaCl₂ and LiCl
Cellulose acetate

Biodegradable and natural

From renewable raw materials

Results

Membrane	MWCO (PEG, kDa)	Pure water permeability at 20°C (Lh ⁻¹ m ⁻² bar ⁻¹)	Pressure at break (bar)
16% cellulose acetate, LiCl	35	177	4.5
20% cellulose acetate, LiCl	20	23	3
20% cellulose acetate, CaCl ₂	15	13	>>5

10kDa<UF<500kDa

Results

16% Cellulose acetate 6% LiCl Solvent: methyl lactate

20% Cellulose acetate 6% CaCl₂ Solvent: Methyl lactate Pores < 0.1 μm

20% Cellulose acetate 6% LiCl Solvent: methyl lactate

20% cellulose acetate 3% CaCl₂ 9% water Solvent ethyl lactate Pores ≈ 0.1 µm

20% Cellulose acetate 3% LiCl Solvent: ethyl lactate

Green-solvent Recovery / Water Recycling

Reverse osmosis

Green-solvent Recovery / Water Recycling

Pervaporation

Bendjama, Z. PhD Thesis INPL 1993. M.K.Djebar et al, J. Membr. Sci. 146 (1998) 125-133.

Conclusions

- Ultrafiltration cellulose acetate membranes were obtained only by using natural and biodegradable materials.
- CaCl₂ used as porogen produced membranes resistant to pressure higher than 5 bars.
- Reverse osmosis has been proved to be a good technique to recycle water from process. Pervaporation could be an ideal technique for green-solvent recuperation.
- Fabrication of green ultrafiltration membranes can be easily implemented on industry together with green-solvent recuperation in actual facilities.

Prospects

- Encouraging results.
- We will try to improve the dope solution to obtain membranes with high permeability, and resistant to pressure. A low MWCO would be desirable.
- Fabrication of hollow fiber membranes.
- -Tests with other natural materials.

TOULOUSE

Dr. Lahitte

Ing. Desclaux

Dr. Aimar

Dr. Remigy

Ing. Rouch

Dr. Macanas

Membrane Elaboration Team

THANK YOU!!

April 22-25, 2008