Vrije Universiteit Brussel Department of Chemical Engineering



# Chabazite: A zeolite allowing selective adsorption of short chain alcohols

Lisa Devriese, Inge Daems, Ranjeet Singh\*, Paul Webley\*, Gino V. Baron, Joeri F.M. Denayer

(\* Dept. Chem. Eng., Monash University, AU)





Vrije Universiteit Brussel

# Molecular sieving: Classical view

#### Small pore openings

- Large host-guest contact surface
- Classical shape and size selectivity
- Exclusion
- Slow diffusion
- Larger molecules can not enter

#### Large pore openings

- Fast diffusion
- All molecules can enter
- No classical shape and size selectivity



#### Zeolitic pore systems





1D translation

#### **Spherical pores: Cage and Window zeolites**



## Chabazite

- Naturally occuring zeolite
- Elipsoidal cages connected

through 8 MR windows of 3.8 x 4.2 Å

- Separation of  $N_2$  and  $O_2$  from Ar
- Propane / propene separation
- Isostructural to SAPO-34: Methanol

to Olefins (MTO) catalyst



#### Chabazite



#### Molecular Assembling in Confined Spaces



\*Schenk M. et al, Journal of Catalysis, 214, 88-99, 2003

# Chain length exclusion in CHA zeolite

Linear hydrocarbon chains n-alkanes alcohols alkenes

## Chain molecules in CHA



Linear hydrocarbon chains can diffuse through 10 MR

## Synthetic CHA

#### Ranjeet Singh, Monash University, AU



M. Bourgogne, J.L. Guth, R. Wey, U.S. Patent 4503024, 1985 gel composition 0.17 Na<sub>2</sub>O : 2.0 K<sub>2</sub>O : 5.18 SiO<sub>2</sub> : Al<sub>2</sub> O<sub>3</sub> : 224 H<sub>2</sub>O Si/Al ratio of 2.59 UC: Na<sub>0.8</sub>K<sub>9.5</sub>[Al<sub>10.3</sub>Si<sub>25.7</sub>O<sub>72</sub>] N<sub>2</sub>-porosimetry **0.17 ml/g** (486 m<sup>2</sup>/g) , activated 350°C

#### Ion exchanged CHA

UC composition of exchanged Na-K-CHAK-CHA $K_{10.7}$  [Al $_{10.7}$ Si $_{25.3}$ O $_{72}$ ]0.17 ml/gNa-CHANa $_{9.5}$ K $_{0.9}$  [Al $_{10.4}$ Si $_{25.6}$ O $_{72}$ ]0.23 ml/gCa-ChaCa $_{4.7}$ K $_{0.8}$  [Al $_{10.2}$ Si $_{25.8}$ O $_{72}$ ]0.19 ml/g



# Molecular Simulations

Monte Carlo simulations: deviations when molecule length approaches that of cage with small window



in them but hit mans of the

WEH Holing Could E Co. 4Call. Weimeren 3021



<sup>1</sup>David Dubbeldam et al., Understanding the window effect in zeolite catalysis,

Angew Chem Int Ed. 2003, 42, 3624-3626

# n-alkane Henry constants



## Adsorption thermodynamics



#### Adsorption mechanism

 $C_1$  to  $C_5$ 



#### Alkanes to $C_5$ : stretched in cages

## Adsorption thermodynamics



#### Adsorption mechanism

 $C_6$  to  $C_{10}$ 



- $C_6$  to  $C_{10}$  alkanes : coiled configuration
- Maximally 10 CH<sub>2</sub> groups per cage

## Adsorption thermodynamics



#### Adsorption mechanism

C<sub>11</sub> and larger



#### Alkanes > $C_{11}$ : stretched over adjacent cages

# What happens in liquid phase, at high degree of pore filling ?

#### **Batch isotherms**





#### n-alkanes on CHA in liquid phase



#### 1-alcohols on CHA in liquid phase



## 1-alcohols on CHA in liquid phase

#### **Cation effect**



 $\Rightarrow$  No clear cut-off  $\Rightarrow$  Cations affect adsorption mechanism

#### 1-alcohols on CHA in liquid phase

**Cation effect** 



## **CBMC** modelling



## Gas phase versus Liquid phase



#### Liquid phase:

- High degree of pore filling
- Restricted motion from cage to cage
- Molecular packing becomes critical
- Small molecules pack better: configurational entropy advantage

# Liquid phase, mixtures?

Column separation experiments





#### Ethanol / propanol mixture adsorption



#### Breakthrough curves Ca-CHA

#### ethanol/1-propanol



 $\Rightarrow$  preferential adsorption of the shortest molecule ethanol

## Ethanol – Hexanol binary equilibrium



## Breakthrough curves Ca-CHA

#### ethanol/1-hexanol



 $\Rightarrow$  preferential adsorption of ethanol  $\Rightarrow$  exclusion of 1-hexanol



# $CO_2$ / $CH_4$ separation



# Conclusions

- CHA operates in the opposite way to most zeolites and excludes longer chains from adsorption.
- In zeolites with cages connected by narrow windows, molecules are preferably confined in the cage, not in the windows.
- Purification processes: remove traces of small molecules from mixtures of heavier components.
- Use in membrane processes?

#### Acknowledgements

Ir. Els Leemans

IAP, IWT FWO Vlaanderen

I. Daems, et.al, Chem. Comm. (2007) 13, 1316–1318





## Very difficult, slow desorption



#### CBMC pure component prediction



R. Krishna, J.M. van Baten, Separating *n-alkane mixtures by exploiting differences in the adsorption capacity within cages of CHA, AFX and ERI zeolites*, Sep. Purif. Technol. (2007), doi:10.1016/j.seppur.2007.09.008

#### Alkane conformations in CHA



AIChE Annual Meeting 2007 – Salt Lake City

# Vapor phase isotherms Ca-CHA 70°C



→ higher capacity for methanol

#### Liquid phase in iso-C8 on Ca-CHA



#### Equimolar mixture simulations



41

#### Window effect - Commensurate diffusion

#### Erionite



Dubbeldam and Smit, J. Phys. Chem. B, Vol. 107, No. 44, 2003

#### Low coverage – Henry constants

#### Exponential increase of K' with CN



AIChE Annual Meeting 2007 –Salt Lake City

# Retention n-alkanes in vapor phase

#### $\rightarrow$ longer chains more strongly adsorbed



## Molecular assembling

Molecular assembling is the arrangement of adsorbed molecules inside confined pore systems, hereby optimizing the balance between energetic ( $\Delta$ H) and steric ( $\Delta$ S) contributions.







#### Gas phase:

- Low degree of pore filling
- Unrestricted motion from cage to cage
- No "packing" or "assembly" problems



#### Liquid phase:

- High degree of pore filling
- Restricted motion from cage to cage
- Molecular packing becomes critical
- Small molecules pack better: configurational entropy advantage

# Chabazite and adsorbed molecules



Smaller molecules pack better: Configurational entropy advantage

# Adsorption kinetics



Diffusion limitations for C5 – Possibly also for longer chains

#### Access blocking by coiled molecules



#### Molecular Assembling in Confined Spaces

#### High Adsorption Potential $\Rightarrow$ High Energetic Interaction



#### Limited space $\Rightarrow$ Large entropy losses / Steric effects $\Rightarrow$ Molecular packing critical