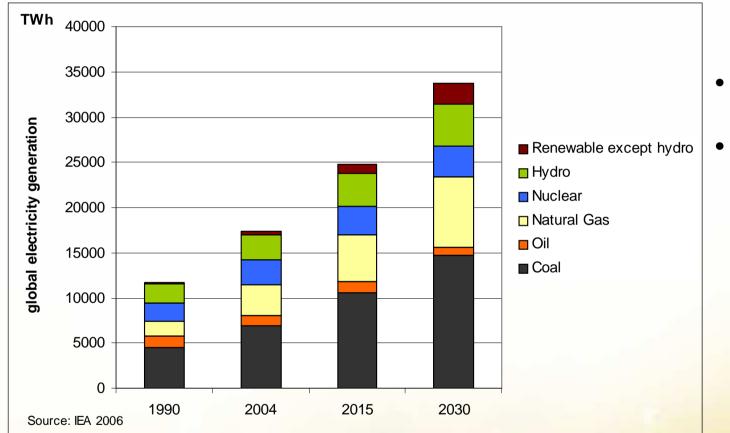
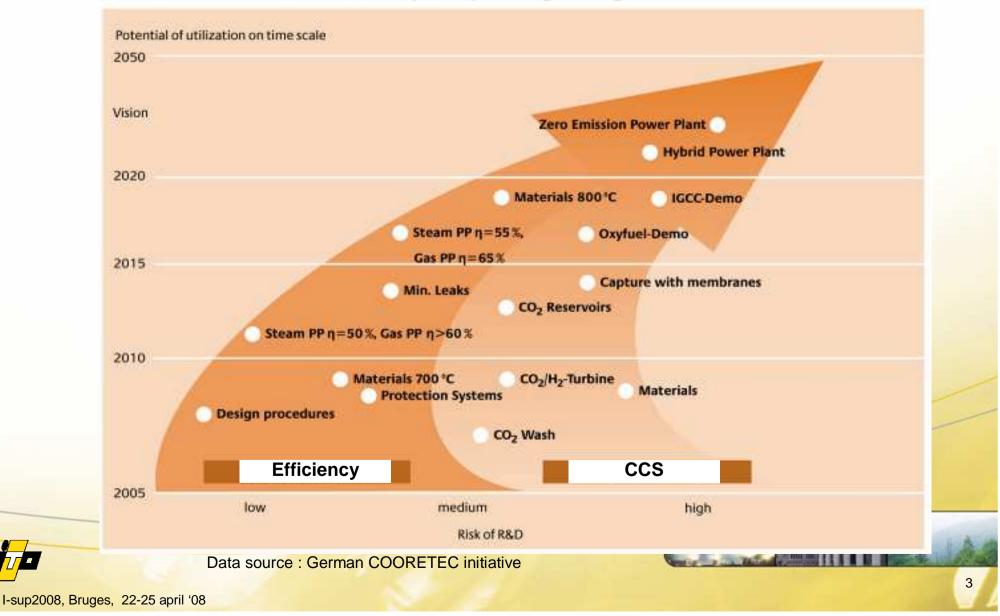

Materials research for sustainable energy production


F. Snijkers, C. Buysse, A. Kavalevski, J. Cooymans, I. Thijs, A. Buekenhoudt and J. Luyten

I-sup2008, April 22-25, 2008, Bruges

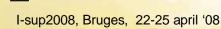
Expected evolution of electricity generation

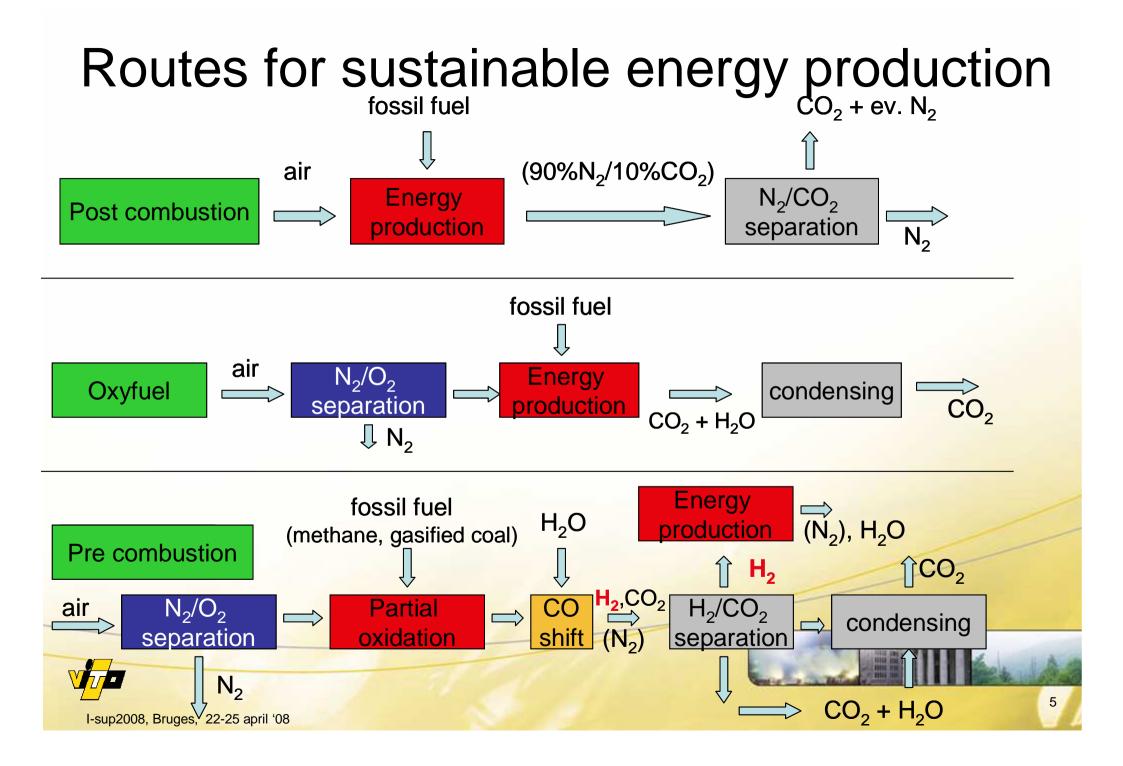
- CO₂ emission levels are expected to increase
- emissions (all sources) are estimated to grow by 36% in 2010 and by 76% in 2020 (projection by World Energy Council, ref. = 2000).


Natural gas 2004 - 2030: + 128%, Coal 2004 - 2030: + 112%

Data source : World Energy Outlook 2006

Approaches to reduction of CO₂ emission


Direction of research in the field of power plant engineering



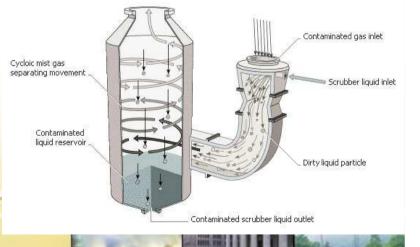
Outline

- Introduction: energy needs and CO₂-emission
- Energy production routes
- State-of-the-art
- Technologies under development
 - Zeolite membranes
 - Chemical looping combustion
 - Hollow fiber gas separation membranes
- Summary & conclusions

State of the art - Membrane technology

	Post- combustion	Oxy-fuel	Pre-combustion
N ₂ /CO ₂ separation	Liquid absorption • polymer • organo-mineral • Zeolite	-	-
N ₂ /O ₂ separation	-	Cryogenic destillation • polymer • ceramic O ²⁻ - conductors	Cryogenic destillation • polymer • ceramic O ²⁻ -conductors
H ₂ /CO ₂ separation	-	-	Pressure swing adsorption (PSA) • microporous ceramic • Pd-based membranes • ceramic H*-conductors

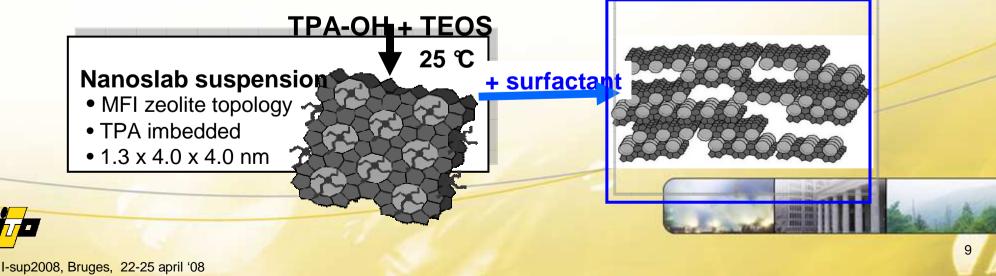
Energy technologies under development


	Post-combustion	Oxy-fuel	Pre-combustion
N ₂ /CO ₂	BIT: • integrated gasification combined cycle (IGCC)	-	-
	 polymer, organo-mineral or zeolite membranes 		
N ₂ /O ₂	_	AZEP: • membrane reactor: separation annex combustion • ceramic O ² —conductors CLC: • Coupled fluidised bed reactors • ceramic catalyst	SMR: POM: • integration of separation + SMR using membrane reactor with reformer catalyst • OTM, ITM • ceramic O ² -conductors
H ₂ /CO ₂	- = CCP-choice	-	SE-WGS M-WGS (ceramic H ⁺ -conductors) HMR: Hydrogen Membrane reforming (ceramic H ⁺ - conductors)

N₂/CO₂ separation (post-combustion)

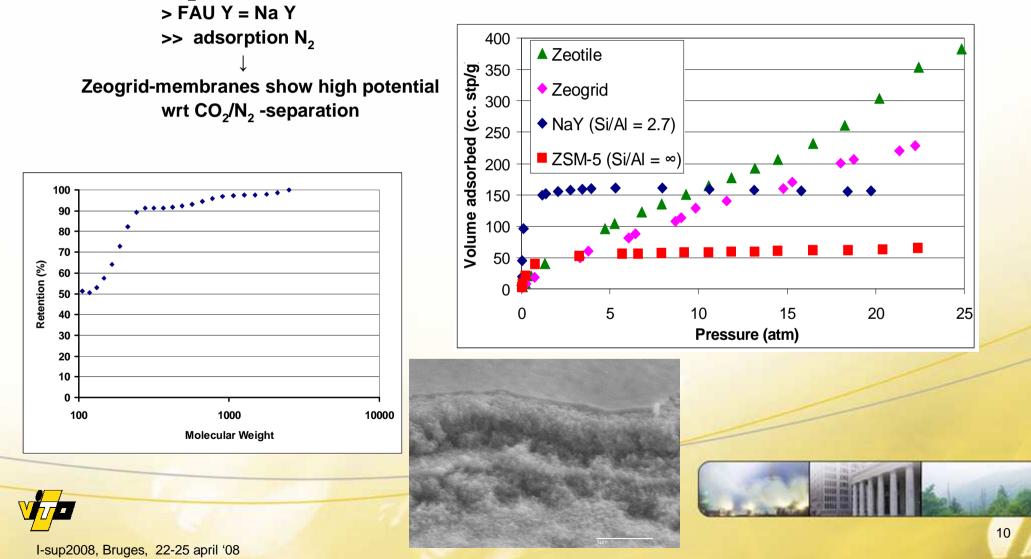
State-of-the art: CO₂ scrubbing

- Absorption by liquid ethylamines (MEA/DEA)
- Mature technology in chemical process industry
- Technology not proven in power plants
- Huge installations with efficiency losses of 10 to 25%
- Dust, soot and SO₂ have to be removed beforehand, max. $30\% O_2$
- Cost of retrofitting: too high for existing plants, acceptable for new plants; price for CO₂ capture: 20 à 50 Euro/ton CO₂
- 1. Improved CO₂ scrubber:
- Use of membrane contactors
 - 10x smaller installations, less efficiency losses
- BIT = Best Integrated Technology
 - extensive integration in Integrated Gasification Combined Cycle (or IGCC-) plant
- Diluted emission: ~4% CO₂

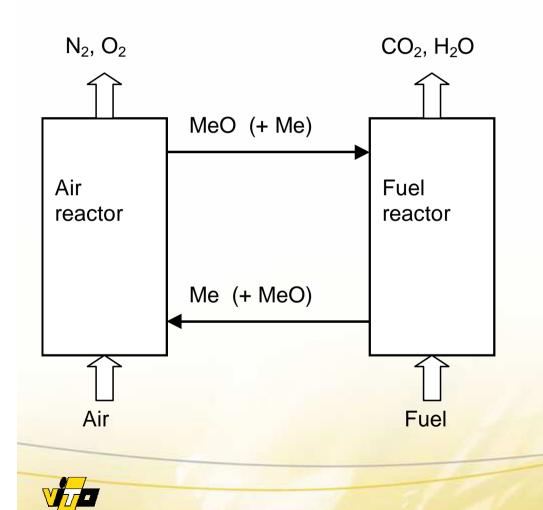

I-sup2008, Bruges, 22-25 april '08

N_2/CO_2 separation by membranes

- 2. Alternative: gas separation membranes
- Economic if CO₂/N₂ > <u>200, flux > 0.2-1 m³/m²hbar</u>
- State-of-the-art:


Membrane type	CO ₂ /N ₂ ratio	CO ₂ flux (m³/m²hbar)		
Commercial polymers (CO ₂ /CH ₄)	30	0.2		
Zeolite membranes (FAU X,Y)	30 - 50	3 - 20		
Block-copolymer membranes (PEO)	50	2		
Mixed matrix membranes	40	0.2 - 2		
Facilitated transport membranes	100	0.02		

VITO: zeolite-like membranes from nano building blocks



N₂/CO₂ separation by zeolite membranes

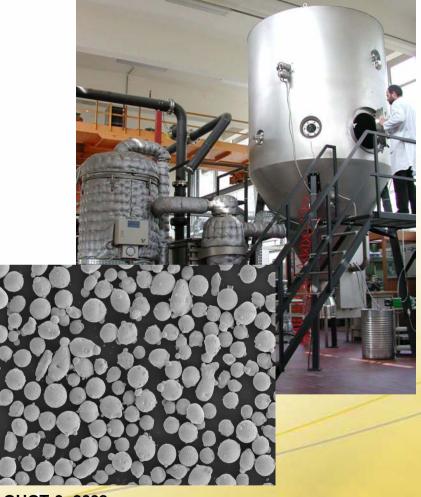
VITO: CO₂-adsorption by 'zeogrid' on support

Chemical Looping Combustion (oxy-fuel)

Alternative to gas separation membranes

Principle:

Coupled air and fuel reactor (eg. fluidised bed reactors, good contact between gas and solids).


- fuel reactor, endothermic: (2n+m)MeO + C_nH_{2m} → (2n+m)Me + mH₂O + nCO₂
- air reactor, exothermal: Me + $\frac{1}{2}O_2 \rightarrow MeO$

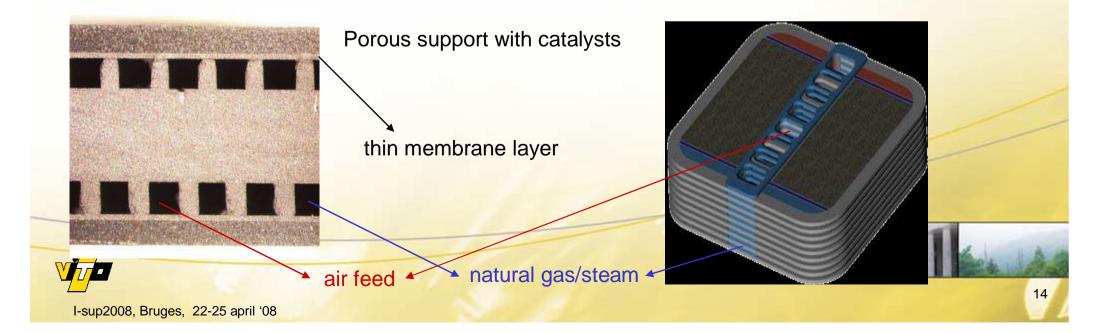
Reduced metaloxide Me, is transferred to the air reactor for reoxidising

Chemical looping combustion

- •Expected time-to-market: ~2012 (CCP)
- •Expected cost reduction for CO₂ removal: ~40%
- •Development ao in CLC GASPOWER (6FP, Alstom, TU Chalmers, Shell (CCP))
- •Fabrication of MeO catalyst particles by spray drying and subsequent sintering

E. Jerndal, F. Snijkers, I. Thijs, T. Mattisson, A. Lyngfelt, 'Investigation of MeO carriers for CLC produced by spray-drying, submitted for GHGT-9, 2008
 T. Mattisson, F. Snijkers, A. Lyngfelt et al., Chemical-looping combustion
 CO₂ Ready Gas Power, submitted for GHGT-9, 2008

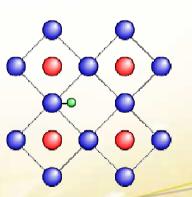
I-sup2008, Bruges, 22-25 april '08

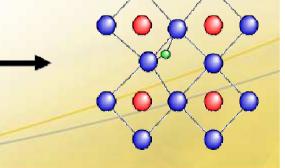

N₂/O₂ separation (oxy-fuel & pre-combustion)

State-of-the-art: cryogenic destillation	Alternative: gas separation membranes	
 ~100 year old, mature technology for O₂ production in power plants High cost and energy consumption (250 kWh/ton O₂) For syngas plants, up to 40% costs are related to the cryogenic oxygen generation units Efficiency loss: 10 to 20% 	 polymer membranes ✓ Commercially available, but low O₂ purity ✓ Less interesting for large capacity, e.g. for energy generation from fossil fuels ✓ Stable at low temperatures only: hampers integration in energy generation from fossil fuel combustion 	
 Low-T process: integration in energy generation from fossil fuel combustion difficult No cost reduction, nor efficiency improvements to be expected. 	dense ceramic membranes ✓ 100% pure O ₂ and stable at high temperatures: advantageous for integration in energy production	

N_2/O_2 separation (pre-combustion)

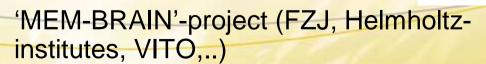
- Harsch conditions: severe requirements to membrane material (ΔP, ΔP_{O2}, T ~850℃); reformer catalyst incorporated in membrane
- Economical if flux > 6 m³/m²hbar
- Parties
 - Praxair (Oxygen Transport Membrane, OTM);
 - Air Products (Ion Transport Membrane, ITM);

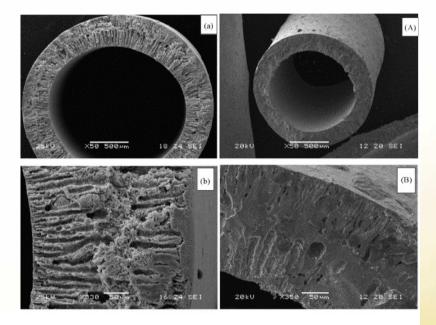



(Mixed) ion conducting ceramics

Ceramic membrane materials:

- H⁺- or O²⁻-ion conductor or (preferred) mixed H⁺- or O²⁻ion electron conductor
- ABO₃ (perovskite) or A₂B₂O₅ (brownmillerite) structure
- Mixed conductor: 'hopping' of ions, simultaneous transport of electrons in the opposite direction: no external circuit
- Conduction at high temperatures (> 600℃)



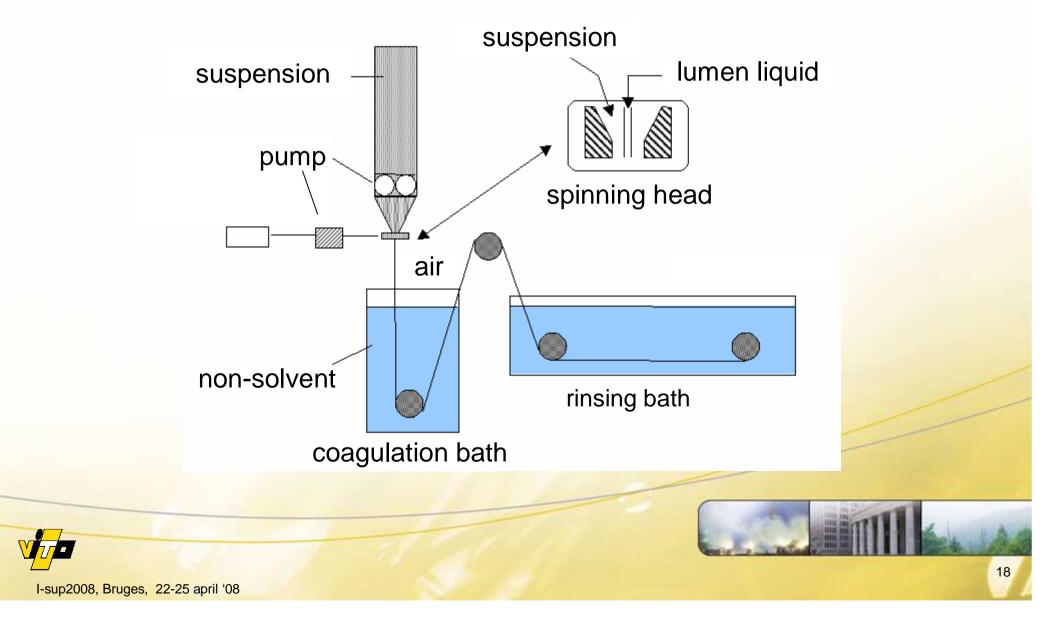


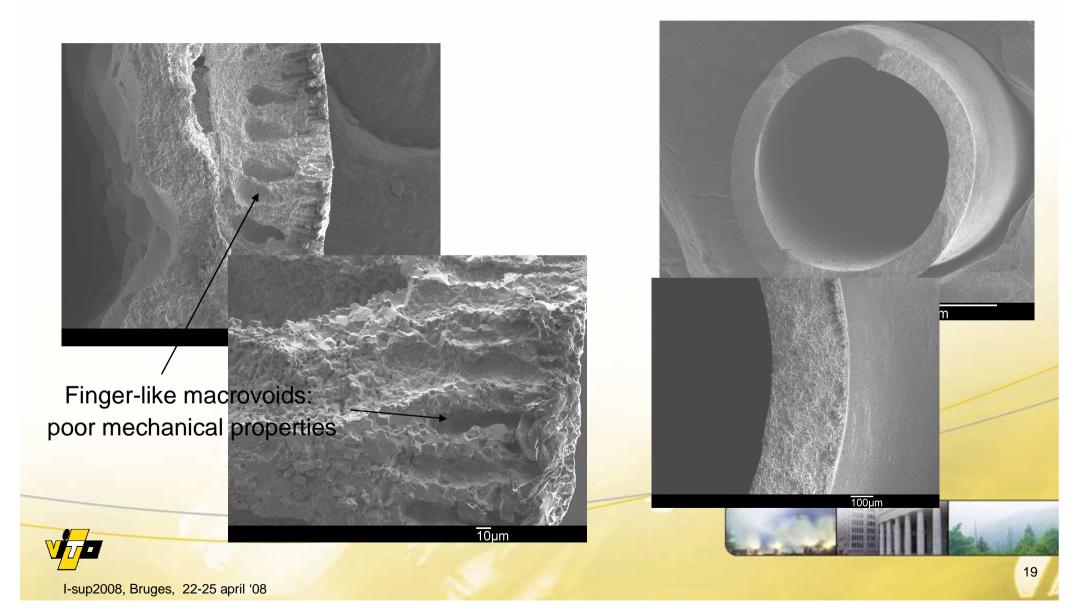
Hollow fibers

- Maximize specific surface area to volume ratio (500-9000 m²/m³) → minimizes the volume of the membrane module and enhances membrane fluxes
- The ideal asymmetric membrane structure could be obtained with the phase-inversion spinning technique
- Macrovoids due to instantaneous liquid-liquid demixing (phase separation):
 - Polymer-rich phase delays the diffusion solvent/non-solvent in the polymer arme fase
 - Nuclei in low-polymer phase (~stable compositione) grow due to slow diffusion solvent/niet-solvent till high polymeer concentration is obtained
- → weak spots: to be avoided

J. Luyten, A. Buekenhoudt, et al., Preparation of LaSrCoFeO3-x membranes, Ceramic Trans., vol 109.

Spinning with phase-inversion


- Suspension:
 - Ceramic powder (60-70%)
 - Binder (5-7%)
 - Solvent (25-30%)
- Lumen liquid


- Coagulation bath with non-solvent
- After drying: calcining and sintering

Phase-inversion spinning technique

Improved macrostructure

Conclusions

- Energy technologies under development rely strongly on materials R&D
- Membranes can have large added value to sustainable energy production; significant efforts are being spend worldwide
- Membranes and membrane materials must meet considerable requirements; in this respect (mixed) ion conducting ceramics are an important class of materials with high potential.
- Hollow fibers with improved macrostructure by the phase inversion spinning technique are an interesting option for membrane modules with high surface area to volume ratio

