Low-friction coatings on elastomers

<u>M. Rombouts</u>, A. Vanhulsel, B. Verheyde, W. Engelen and D. Havermans

Vlaams Instelling voor Technologisch Onderzoek (VITO), Mol, Belgium

Outline

✓ Introduction

- ✓ Results
 - ✓ Thick coatings by laser cladding
 - ✓ Thin coatings by atmospheric plasma treatment
- ✓ Conclusions and future work

Surface treatment to improve tribological behaviour of elastomer components

- Elastomer components in sealing and sliding applications
- Need to understand and improve the tribological behaviour of elastomers
 - High dry sliding friction \rightarrow use of lubricants
 - Improved performance (reduce noise, vibrations, etc)
 - Environmental considerations (reduce of eliminate use of grease and lubricants)
- Development of surface treatments and coatings with solid lubricant properties compatible with elastomer materials
 - Laser cladding

June 5, 2008

Atmospheric plasma treatment

Laser cladding - general

 Melting of additive material, mostly powder, by means of a moving laser as heat source

Laser cladding – type of coating in general

- Coating type: metal or metal-ceramic coatings
- Substrate materials: metals
- Thickness range: mm
- High-performance coatings
 - metallurgical bonding to substrate
 - no porosity
 - low heat input
- Applications: repair, improved corrosion / wear resistance

Laser cladding of polymer coatings

- Thermoplastic (composite) coating: polyamide-based
- Polymer, metal substrates: thermoplastic polyurethane
- \bullet Thickness in order of 100 μm
- Average roughness is relatively high

Ball-on-Disc tribotesting @ VITO

Test parameters:

- F_N = 1 N
- ball radius = 5 mm
- wear track radius = 5 mm
- rotation speed = 100 mm/s
- unlubricated
- 100Cr6 steel counterface

CSEM BOD tribometer

Frictional behaviour of laser cladded coating

Frictional behaviour of laser cladded coating

Analysis of wear after tribotesting

Counterface material

June 5, 2008

confidential – © 2008, VITO NV – all rights reserved

Outline

✓ Introduction

- ✓ Results
 - ✓ Thick coatings by laser cladding
 - ✓ Thin coatings by atmospheric plasma treatment
- ✓ Conclusions and future work

Atmospheric plasma technology

- Dielectric barrier discharge (DBD)
- Cold plasma surface engineering technique (surface cleaning, activation, coating)
- Low investment cost
- Continuous, in-line processing
- Easy upscaling
- Injection of all types of precursors (gases, liquid chemicals, dispersions etc)
- Different configurations (PlasmaSpot[®], PlasmaLine[®], PlasmaZone[®])
 - Parallel plate: direct treatment of 2D (web) materials
 - Torch systeem: indirect treatment of complex, 3D components

Setup of atmospheric Plasmaspot[®]

confidential - © 2008, VITO NV - all rights reserved

June 5, 2008

Coating type

- Thickness range: nm µm
- All types of substrate materials: plastics, metals, glass, paper etc
- Coating type: siloxane-based hybrid (organic-inorganic) coatings
- Precursor: (Si-O-R) type e.g. APEO
- Roughness of substrate is followed
- Soft coatings compared to ۲ conventional tribological coatings
 - Less severe triboconditions

Typical hardness and E-modulus values

Instrumented indentation test CSM (continuous stiffness measurement)

Material	H (GPa)	E (Pa)
APEO coating	0.8	10 ¹⁰
Bulk PC	0.2	10 ⁹
Bulk LDPE	0.02	10 ⁸
Steel	10	1011
Rubber		106

SEM/EDX-analysis of APEO coating on HNBR

Frictional behaviour of plasma coating

Analysis of wear track after tribotesting

Lessons learned & challenges

- Atmospheric plasma and laser cladded coatings show potential as low-friction coating
- Need for tribomapping to identify application areas (e.g. running-in coatings, microtribology)
- Complex (tribological) behaviour of elastomers → selection and interpretation of tests

Thank you for your attention!

Marleen.Rombouts@vito.be

20

