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“Limits of qrowth” Meadows et al., (1974)
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Brundtland Comwmission Report. “Our
Commpn Future” (19€7)
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Sustainable Development Is:

A globally accepted approach to sustaining economic growth
without harming our planet or exhausting its resources
while improving the quality of life for its current
and future inhabitants.
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What's driving the ‘Sustainability’ movement?

Society and growing public concern in U.S.

Rapidly emerging state regulatory plans

Recent U.S. elections

= Equity markets considering sustainability in valuations
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GO GREEN.
GET RICH.

SAVING THE PLANET HAS SUDDENLY
BECOME GOOD BUSINESS.
MEET 2 COMPANIES LEADING THE CHARGE.
(And learn how to get in on the action too.)
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The scale of the problem grows
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Indicators of the human influence
on the atmosphere during the Industrial era
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Leaf unfolding dates in Europe
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Greenland Ice Sheet Permafrost
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Difference (°C) from 1961-90
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Over the Longer terme drought Ls tnereasing
most places




Ocean temperatures are rising

Ocean
temperatures
have Iincreased
to depths of at
least 3000 m.
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Recent coral Ieaching
events




Powering the Planet
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Population Growth to
10 - 11 Billion
People in 2050

Per Capita GDP Growth
at 1.6% yr+

Energy consumption per
Unit of GDP declines
at 1.0% yr -1
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Energy Consumption vs GDP
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Global Energy Consumption
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Global Energy Consumption, 2001
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Today: Production Cost of Electricity

(in the U.S. in 2002)
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What we can do now: The
\Wedge Concept
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Green Engineering & Climate
Change

Billion of Tons of
Carbon Emitted per
Year
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Where are we headed?
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The wedge concept
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Carbon Emissions by Sector

Electricity

5

Need 7 wedges...

... hot all cuts can
come from one sector!

Transportation
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A Challenge: Cut Greennhouse
Emissions using Current
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Energy Efficiency &  Conservation
CO, Capture

and Storage Natural Sinks
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Efficiency

a Produce today’s electric capacity
e with double today’s efficiency
Double the fuel efficiency of the

world’s cars or halve miles traveled Average coal plant efficiency is 32%
today

There are about 600
million cars today,
with 2 billion
projected for 2055

.| Use hest efficiency practices in
s | all residential and commercial
el [ 4| buildings
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bulbs with CFL’s would provide 1/4 of
one wedge

e

i
)

T - g

2 k.

- N

!
e B -
"l I'
.‘1' ¥ :.

STATIALTTEEN

:II.I TIETE TRl

B




Carbon Capture &
Storage

GOy dmsobeed in
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Implement CCS at | My, = corp

- 800 GW coal electric
plants or

» 1600 GW natural gas
electric plants or

* 180 coal synfuels plants
or

+ 10 times today’s
ca pamty of hy’d rogen Graphic courtesy of Alberta Geological Survey
plants

A wedge will require injecting an volume of CO,
equal to the amount of oil extracted every year

CMI -




Nuclear
Electricity &
Hydrogen

Triple the world’s nuclear
electricity capacity by 2055

OR

Build 600 high-temperature « pErat £y R0 O
plants to produce hydrogen Graphic courtesy of NRC
(none now)

The rate of installation required for a wedge from electricity
is equal to the global rate of nuclear expansion from 1975-
1990.

Phasing out of nuclear electric power would create the
need for another half wedge of emissions cuts




Wind Electricity

Install 2 million
windmills to replace
coal-based electricity,

OR

Use 4 million windmills
to produce hydrogen
fuel

A wedge worth of wind electricity will

require increasing current capacity by a
Pheto courtesy of DOE factor of 50

An electricity wedge would require land
area equal to about 3% of U.S. land area




Solar
Electricity

Install 20,000 square
kilometers for dedicated
use by 2054

= N =
Lk 2

Pholos courtesy of DOE Photovoltaics Program

A wedge of solar electricity would mean increasing current
capacity 700 times

A wedge would require an array of photovoltaic
panels with an area approximately the size of New
Jersey



Efficiency of Photovoltaic Devices
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where can the wuaterials aommuwitg angl
industry malke a difference?
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Materials technology is key to
sustainable production
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Materials design
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We must innovate — e.g. how do we replace
reliance on|precious metals like Pt?




Malke ceravale ProCesses Wore sustainable
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Legrn to smte\r at <1000C \

Develop high eff|C|ency sintering furnaces - why dowe heat
the entire furnace when only/the part needs to be heated? Is
microwave sintering really more energy efficient?




Materials in energy
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Batteries weed to get smaller and wore efficient
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Lighting and Energy Consumption

Adapted from M Kendall and M Scholand,
"Energy Savings Potential of SSL

[ in General Lighting Applications"

(U.S. DOE-OBT study by AD Little, 2001),

and EIA Statistics.
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Solid-State Lighting = Semiconductor Light from

Crystals and Organic Materials

Light source efficiency White Power LED & OLED
4 Lumen/Watt
150 - ential 4
Standard Light Sources LED |
© Year of invention
100 |~ Metal haliV 21]1[]?-
1 i3 " » r
Fluorescent — o ;
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L = 1981
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=" Incandescent 1986
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Inorganic LEDs Boosting Efficiency and High Flux

~  There are less then 10 years between the first white
@r’; LEDs in 1996 and todays LED powermodules

Progress of | White LEDs | since 1996 is impressive

Improvement factor

Intermal l::LE 10 % * 60 % A
Light extraction E. 25 % * 75 % 3
Flux per device 0,5 Im » 400 Im 400
Costs per Lumen ~3€ ~0,1€ 30
LEDs the enabler for LED based Hybrid Lamps the best of

both flux and color tunabilif

{ r i i i

Source Halla -

Projection LCD Backlight Headlamp CFL combined with LED

e, =
Praofonics2 1-Birash Opte Semiconductors i:i ﬂ?%ﬁﬁ ?"ﬂ
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Organic LEDs the Next Wave in SSL

| 2008 2012 2016

Transparent OLED sources

Active color and
brightness tunable OLED

White OLED signage
and light tiles on glass

Fhatonics2 -Sirask Opto Semiconductors
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Il I'm saying is now 1s the time to develop the technology to deflect an asteroid.”

©.The New Yorker Collection 1998 Frank Cotham from
cartoonbank.com. All Rights Reserved.
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