Microwave plasma enhanced chemical vapor deposition synthesis and applications of few layer graphene.

<u>Alexander Malesevic</u> ^{a,b} Annick Vanhulsel ^a Chris Van Haesendonck ^b

^a VITO Materials, Mol, Belgium

^b Laboratory for Solid-State Physics and Magnetism, Heverlee, Belgium

Menu

A tasse off graphene

Sythesiss off few layer-graphenee

፟፟፟፟፟፟ጟጟጟጟጟ

Characterization

፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟

Growth mechanism

፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟

Applications

Outlook and conclusions

Introduction

Graphene, the mother of all graphitic allotropes

A.K. Geim and K.S. Novoselov, The Rise of Graphene, Nature Materials, 6, 183, 2007

i-SUP, 22-25 April 2008, Bruges

Introduction

Introduction

Graphene synthesis techniques

Proc. Natl. Acad. Sci USA, 102, 10451, 2005

Solid State Communications 143, 92-100, 2007

Nanotechnology 18, 135301, 2007

Nano Letters, 7 (11), 3394, 2007

Experimental Setup

Iplas Cyrannus microwave plasma source

Side view

Top view

TM 012 mode $n_e \sim 10^{13} / cm^2$

Few layer graphene synthesis

Scanning (left) and transmission (right) electron microscopy

i-SUP, 22-25 April 2008, Bruges

Few layer graphene synthesis

i-SUP, 22-25 April 2008, Bruges

Few layer graphene growth mechanism

SEM study

Scale = 1 µm

A. Malesevic et al., Nanotechnology, in press 2008

i-SUP, 22-25 April 2008, Bruges

Few layer graphene growth mechanism

Modelling combination of molecular dynamics and monte Carlo simulations

i-SUP, 22-25 April 2008, Bruges

 ${\mathcal O}$ A. Bogaerts, E. Neyts, A. Maeyens

Few layer graphene field emission

Field emission experimental results

Few layer graphene field emission

Field emission experimental results

i-SUP, 22-25 April 2008, Bruges

Bioactivation with ss-DNA

© P. Wagner, R. Vansweefelt

Bioactivation with ss-DNA

Confocal fluorescence microscopy

Titanium scaffolds for tissue regeneration

Principle

i-SUP, 22-25 April 2008, Bruges

© M. Ravelingien, J. Luyten

Titanium scaffolds for tissue regeneration

© M. Ravelingien, J. Luyten

Titanium scaffolds for tissue regeneration

Material analysis

Top view SEM Morphology

Electron diffraction mapping RGB Comp Ti-Ca-P

 ${}^{ ilde{C}}$ M. Ravelingien, J. Luyten

- MW PECVD Synthesis of FLG:
- No catalyst required
- * Compatible with industrial techniques
- Properties of as grown flakes:
- # 4-6 layers thick
- # Highly crystalline
- Few defects
- Three step growth mechanism
- **Over the set of the s**
- * Promising field emission behavior
- * Potential DNA biosensor devices
- * Titanium scaffolds for tissue regeneration

Acknowledgements

Chris Van Haesendonck ^b Alexander Volodin ^b Annemie Bogaerts ^e Annick Vanhulsel ^a Axel Maeyens ^d Eric Neyts ^e George Dinescu ^d Gustaaf Van Tendeloo ^c

Liang Zhang ^c Manish Pal Chowdhury ^b Matthieu Ravelingien Patrick Wagner ^f Raymond Kemps ^a Rob Vansweefelt ^f Roumen Vitchev ^a Sorin Vizireanu ^d

^a VITO Materials, Mol, Belgium

- ^b Laboratory for Solid-State Physics and Magnetism, Heverlee, Belgium
- ^c EMAT, University of Antwerp, Antwerp, Belgium
- ^d National Institute for Laser, Plasma and Radiation Physics, Magurele, Bucharest, Romania
- ^e Plasmant research group, University of Antwerp, Antwerp, Belgium
- ^f IMO, Diepenbeek, Belgium

