Porosity as a contributor to solutions for sustainable production

<u>J. Luyten</u>, S.Mullens, F.Snijkers, A.Buekenhoudt <u>Materials Technology</u>, VITO, Boeretang 200, B2400 Mol, Belgium *e-mail: Jan.Luyten@vito.be*

- Introduction
- Ceramic membranes
- Porous scaffolds for bone regeneration
- Ceramic foams as filter or as catalytic support
- Conclusion

Introduction

Sustainable manufacturing must be:

- more efficient and less energy consuming
- non or less polluting
- resource efficient
- improved components

The use of porous materials can be a solution

- ceramic membranes
- porous orthopedic implants
- ceramic foams as filter or catalytic support

Membrane filtration

Approaches to reduction of CO₂ emission

Direction of research in the field of power plant engineering

June 5, 2008

Ceramic hollow fibers

- Dens ceramic (proton and oxygen conductors) membranes, hollow fibers
- High surface area to volume ratio of hollow fibers enhance membrane fluxes
- Spinning with phase inversion,
- Bending strength upto 80 MPa

VITO participation in 'MEM-BRAIN'project (FZJ, Helmholtz-institutes)

J. Luyten, A. Buekenhoudt, et al., Preparation of LaSrCoFeO3-x membranes, Ceramic Trans., vol 109.

confidential - © 2007, VITO NV - all rig

Ceramic NF membranes

High flux + retention : multilayer structure

1 or 2 toplayers (NF) 2 interlayers (UF)

support

Sol-gel coating (colloidal, polymeric)

Separation performance in water

Salt retention : monovalent salts on TiO₂ NF membrane

Zeogrid powder

Recently discovered know-how [X] :

- Nanoblocks can be stacked in an ordered way with the use of appropriate surfactants
- Leads to micrometer large grains called zeogrid
- Zeogrid calcined has dual porosity : micropores(0.5nm)+ interblock voids

[X] Kremer at al., Adv. Funct. Mater., 12, 286, 2002

A new generation of zeolite membranes

- Zeogrid on support : dipping in solution of nanoblocks + surfactants
- thin membranes < 100 nm : high flux, crack free, high selectivity
- simpler production than hydrothermal synthesis

Zeogrid layer on porous support

Supports : flat and tubular α -Al₂O₃ (100 nm) and α -Al2O3/TiO₂ (50 nm) + TiO₂ (3nm) Zeogrid coatings : with surfactant

13

Ceramic Foams

- Ceramic foams are a cellular material with a broad field of applications: filters for molten metal, dust and soot filters, scaffolds for bone replacement, high temperature isolation,...
- Application performance is strongly related to cell size, window opening and other structural parameters
- Objective is to produce ceramic foams with sufficient strength and controlled micro-macro structure.
- We produced ceramic foams by:
 - -A reaction bonded PU replica technique
 - -Biogelcasting of foams
 - -Hollow beads method
 - -Robocasting

Manufacturing routes

Quality of Life of elder people

Tissue Engineering for Bone generation

Orthopedic Implants Ti-foams + biomimetic coating

Drug delivery system

Porous Ti-structures

Local drug delivery system CaP coating

- osteoinductive
- drug delivery matrix

optimal release profile

- initial burst release •
- therapeutic concentrations • from a few weeks till some months
- sharp release fall at the end •

Filter for Molten Metal

- EU project AI recycling project aiming to remove intermetallic materials from the molten melt
 - RB Mullite replica technique,
 - with a gradient in cell size
 - coated with a salt

- Filter tests

June 5, 2008

Soot Filter for diesel cars

- 90% removal of particles with low pressure increase.
- Replica technique on different Pu cell sizes
- Improve strength by using RB-processing
- Can be washcoated

Zeolites on a Catalytic ceramic foam

22

Conclusions

- Sustainable production is a need
- We demonstrate that different kind of porous materials can contribute to such process improvement
- Special attention was given to the use of ceramic membranes and to different application with ceramic and metallic foams

23

24

Different pores : different filtration

proces

Reaction Bonded Modified Replica Technique

- Preparation of the metal/metaloxide mixture
- Preparation of an aqueous slurry (no gas evolution, rheology)
- Coating of the PU-sponge, squeezing and drying
- Calcination and oxidation
- Sintering

26

Hollow beads method

- Preparation of the slurry
- Coating of the sacrificial cores (peas, seeds, styrofoam granules,...)
- Packing of the cores
- Second coating
- Thermal treatments (drying, calcining, sintering)

28

Hydroxyapatiet etal 500 µm mm After sintering Before sintering ~40-50 %TD Pore sizes ~500 x 500 μm

3DFD

Bone scaffold requirements

- Biocompatibility: bio-inert or bio-active
 - Bio-inert metals: Ti-6Al-4V, Ti, SS, Ta
 - Bioresorbable ceramics: hydroxyapatite, α- or β-tri calcium phosphate.
 - Biodegradable polymers: PGA, PLA, PGLA
- Structural parameters:
 - High porosity
 - Open porosity :
 - Allowing osteoprogenitor cell seeding
 - cell attachment/cell migration
 - Mass transport cell nutrition
 - Interconnectivity
 - Specific surface area
- Adequate mechanical behavior

30

In vivo behavior

- Nude mice model
 - Ectopic implantation
 - Osteoinduction?
- Rabbit
 - Tibia large defect
 - Scaffold h=20mm; ø=6mm

31

Steps to tissue integration

Surface

32