GELATIN & HYDROXYAPATITE CELL DELIVERY SYSTEMS IN BONE TISSUE ENGINEERING

i-sup '08 Brugge 24th of April Lippens E, Vertenten G, Girones J, Luyten J, Gasthuys F, Schacht E and Cornelissen R.

Tissue engineering

Creating living tissue in the lab to replace damaged or lost body parts by mixing:
Cells
Biomaterial: natural or synthetic
Growth factors

Bone defects

By trauma

By congenital disorder
 Resection due to tumor removal
 Mostly irregular bone defects
 Cell seeded scaffold not ideal, to

Cell seeded scaffold not ideal, to fit accurately in the defect.

→ In situ polymerizable filling material

In situ polymerizable material

A synthetic polymer paste / liquid,

- that can be pressed / injected in the defect
- by photo- or chemical cross-linking, can be hardened in the exact shape of the defect,
- that degrades over time.

Examples: Modified: Lactide caprolactone Hydrogels

Cell source

Bone tissue engineering

Creating living bone tissue in the lab to replace damaged or lost bone parts by mixing:

In situ cross-linkable biomaterial

 Osteogenic differentiate bone marrow cells
 Osteogenic growth factors (optional)

Cell mixing

- Mixing cells with the polymer paste/liquid can be harmfull for the cells:
 - Seeding cells onto a macroporous microcarrier system.
 - Protecting cells
 - Anchorage dependent cells prefer a substrate to adhere

Cell delivery systems

CultiSpher-S

= gelatine microcarrier

Ø 130 – 380 µm

Percell Biolytica

Hydroxyapatite

Ø 4 – 5,5 mm

VITO

= Commercially available macroporeus gelatine microcarrier system. Average pore size: 20 µm Literature: Chondroprogenitor cells (Biomaterials 27, 2970-2979, 2006) Keratinocytes (Cell Transplantation 15, 435-443, 2006) (Burns 33, 726-735, 2007) Nerve cells (Plast. Reconstr. Surg. 120, 2007) Stem cells (J. Biotechnology 132, 227-236, 2007) (Biomacromolecules 8, 825-832, 2007)

Our experiences with CultiSpher:

- Osteoblastic cell lines: MC₃T₃-E1
 UMR-106
- - → osteogenic differentiation

Mouse embryonic stem cells

- → undifferentiated proliferation
- → osteogenic differentiation

Rat bone marrow cells seeded on CultiSpher-S carriers:

- a. 2 days of culture. Calcein AM fluorescent staining
- **b.** 28 days of culture. Trichrome Masson staining
- С. 28 davs of culture. н&E staining

Cell delivery systems

CultiSpher-S

= gelatine microcarrier

Ø 130 – 380 µm

Percell Biolytica

Hydroxyapatite

Ø 4 – 5,5 mm

VITO

Hydroxyapatite

 Prepared by mixing hydroxyapatite powder (portion size 30 - 150 µm) with water and agar, as gel forming agent and some surface active products.

- Average pore size: 100 µm.
- Hydroxyapatite is the major bone matrix component.

Hydroxyapatite

DAPI \longrightarrow staining of MC₃T₃-E1 cell nuclei

Hydroxyapatite

In situ hardening biomaterial

1. Lactide caprolactone polymer paste

- Methacrylate-endcapped poly-D,L-lactide-cocaprolactone
- Cross-linking: illumination with blue light.

2. Hydrogel liquid

= Pluronic ALA-L

Cross-linking: illumination with UV light.

In situ hardening biomaterial

1. Lactide caprolactone polymer paste

Cross-linking (500mW/cm²)

Polymer: methacrylate-endcappedpoly-D,L-lactide-co-caprolactone

katalyst: D,L-camphorquinone

Solvent: Triacetin

In situ hardening biomaterial

In vivo test: implantation

6 mm ø holes were drilled witl
 a trephine burr in the media
 diaphyseal cortex of a tibia.

3 holes were filled with *in situ* polymerizable methacrylate polymer.

Cross-linking of the polymer in the defeet with blue

After UV crosslinking

In vivo test: histology

Photomicrograph of a tibial defect:

- 1: Newly formed trabecular bone
- 2: Capsule of tissue around polymer
- 3: Microcarrier
- 4: Tissue and cells around the microcarrier
- 5: Polymer

Conclusions

- Osteoblasts colonize the 2 types of macroporeus carrier systems.
- These cell loaded carriers can be mixed with different types of in situ polymerizable filling materials.
- In vivo tests with CultiSpher in goat tibiae revealed that the cells remain viable in the methacrylate polymer.
- Future in vivo testing will be done with CultiSpher & hydroxyapatite cell delivery systems encapsulated in Pluronic ALA-L.

Covalent hydrogel: crosslinking

free radical photo-initiator polymerization irgacure 2959

3D crosslinked hydrogel network