

2D surface confined nanoporous molecular networks at the liquid-solid interface: a scanning tunneling microscopy study

> Shengbin Lei Laboratory of Photochemistry and Spectroscopy and INPAC KULeuven

Content

- Two strategies toward formation of flexible porous networks
 - **Concentration control**
 - Guest induced transformation
- Conclusion

2D organic nanoporous networks

Ordered structures with cavities formed by organic molecules on top of a solid substrate.

2D analogues of Zeolite and Metal-organic frameworks

Interactions involved

Hydrogen bonding

Metal-organic coordination

Van der Waals forces

Application of the 2D nanoporous networks

Template

Assembling of other organic molecules in a predefined manner

Molecular device

Langmuir, Vol. 20, 2004, 9403.

Angew. Chem. Int. Ed. 2007, 46, 4089.

Challenges

Adjusting the pore size

Size available: from < 1 nm to 5 nm

Adjust the pore size sequentially. Larger size possible?

Hosting molecular clusters

nanovessels for chemical reaction

Langmuir, Vol. 20, 2004, 9403.

Flexible porous network based on alkyl chain interdigitations

Dehydrobenzo[12]annulene Derivatives

Honeycomb structure

Tahara K. et al. J. Am. Chem. Soc. 2006, 16613

Advantage:

adjustable with high precision, ~ 2.5 \AA

Parameters of the honeycomb structure formed by DBA-OCn

	DBA-OC10	DBA-OC12	DBA-OC14	DBA-OC16	DBA-OC18	DBA-OC20
Repeating period (honeycomb)/nm	4.1	4.6	5.0	5.5	5.9	6.3
Size of the pore Corner-to-Corner	2.9	3.5	3.9	4.5	5.0	5.4
Area of unit cell /nm ²	14.6	17.9	21.7	25.7	30.1	34.4
Percentage of pore /%	37	42	46	50	53	56

So in principle we can get nanopores with diameter ranging from 2.9 nm up to 5.4 nm using these DBAs as building blocks.

Two strategies

•Adjusting the concentration

•Guest induced transformation

Concentration dependent formation

The concentration of the solution determines the number of molecules on the surface.

Angew. Chem. Int. Ed. 2008, 47, 2964 - 2968

A series of STM images obtained with different concentration of DBA-OC16.

•General phenomena

•In a certain concentration range the surface coverage of porous structures show a linear dependence on concentration

A thermodynaomic model

At equilibrium

$$\overline{\mu}_{l} = \overline{\mu}_{sol}$$
 and $\overline{\mu}_{h} = \overline{\mu}_{sol}$

Nanopores with diameter ranging from 2.9 nm up to 7.5 nm could be formed. The pore diameter could be tuned with precision of 0.25 nm.

Guest induced transformation

J. Am. Chem. Soc. 2008, in press.

18+Un

SeDBS:SAL

SIGAS: OAChe

Organic Porous Frameworks in 2D: tunable in size? Yes, but... Seves: SAplends

Without guest

Concentration of DBAs: 0.05 mg/ml

ICAS: OAL

Allows us to adjust the number of molecules, the geometry in the cluster.

The host matrix changes its structure in order to accommodate the adsorption of the guest clusters.

Dynamics within the host-guest matrix

Dynamics of the guest inside the cavity Migration of the guest between cavities Dynamics of the host molecules SEDES:SA

Rotation of the nanographene dimers inside the cavity of DBA-OC12

Sebes: SA

S:OAC

Note the length of the dimer is larger than the diameter of the cavity. 3.8 nm vs 3.5 nm

Rotation of the clusters inside the cavity

These observations indicate the rotation angles are multiples of 60°.

The rotation of the guest cluster is a cooperative movement of the host-guest architecture.

2D nanoporous networks could be form with two different strategies: concentration control and guest induced transformation.

Tunable size and period, flexible

Beyond the art

Conclusion

Hosting molecular clusters, paved the way toward to use such nanoporous host matrices as nanoreactors

Acknowledgements

K.U.Leuven

Prof. Steven De Feyter Prof. Mark Van der Auweraer Prof. Frans De Schryver

Coll: Thank you for your attention !

Max Planck Institute for Polymer Research

Prof. Klaus Müllen Dr. Xinliang Feng

Osaka Univ.

Prof. Yoshito Tobe Dr. Kazukuni Tahara

Financial support

The Fund of Scientific Research – Flanders (FWO)

Institute for Nanoscale Physics and Chemistry (INPAC)

