

Near-net-shape fabrication of porous NiTi: Use as implant materials and energy-absorbers

M. Köhl¹, T. Habijan², M. Bram¹, H.P. Buchkremer¹, M. Köller², D. Stöver¹

¹ Forschungszentrum Jülich GmbH IEF-1: Institute of Energy Research ² Universitätsklinikum Bergmannsheil Bochum Chirurgische Forschung

25. April 2008 | Manuel Köhl

Outline

- Demands on Implant Materials
- Production of Net-shaped Highly Porous NiTi
- Characterization of Porous NiTi
- Cell Culture Experiments
- Applications of Porous NiTi

Demands on Implant Materials

Osseointegration

- → Structural and functional connection between natural bone and implant:
- Pore size of 100 500 μm
- Interconnecting porosity
- Bone-like stiffness
- Sufficient strength

NiTi as an implant material

- Unique Shape Memory Properties
- Bone-like stiffness
- Sufficient strength
- Good corrosion resistance and biocompatibility

T. Steffen et al., 51st Annual Meeting of the Orthopaedic Research Society, Washington DC, **30**, p.1396 (2005).

S.A. Shabalovskaya, Bio-Medical Materials and Engineering 12, pp. 69–109 (2002)

Combination of Different Methods

Metal Injection Molding (MIM) of NiTi at FZJ:

- Production of complex shapes
- Mass production possible
- Powder metallurgical results comparable to melt metallurgy

Space Holder Method at FZJ for Titanium:

- Established method
- Applications for dental implants and intervertebral disc replacement

L. Krone et al., Advanced Engineering Materials, **7**, pp. 613–619 (2005)

Laptev et al., Powder Metallurgy, **47**, pp. 85-92 (2004)

SYNTHES

Processing

Development of Microstructure

starting powders NaCI+NiTi

Green body

after space holder removal

as-sintered

Microstructure achieved as-sintered comparable to trabecular bone.

Microstructures

Sample	NaCl	NiTi	Ni [at.%]
a.)	50 vol.% 355-500 μm	50 vol.% 25-45 μm	50.6
b.)	50 vol.% 355-500 μm	50 vol.% 25-45 μm	49.7
c.)	70 vol.% 125-250 μm	30 vol.% 25-45 μm	49.7
d.)	70 vol.% 355-500 μm	30 vol.% 25-45 μm	49.7

50.6 at.% Ni → Pseudoelasticity 49.7 at.% Ni → 1-Way-Effect

Different Porosities 50-70 vol.%

Different Pore Sizes 125-500 µm

Chemistry / DSC – sintered bodies

- Acceptable impurity contents
- Different transformation behaviors of sintered samples
- → at body temperature of 37°C austenitic (pseudoelasticity) for Ni-rich NiTi, martensitic (1-way-effect) for Ni-poor NiTi

Mechanical Properties Influence of Ni content - Porosity: 50%, Pore Size: 355-500 µm

MIM19 (50.6 at.%):

- Ni-rich starting powder
- Pseudoelastic properties
 > 6% reversible deformation
- higher compression strength at low deformations compared to...

PHF6 (49.7 at.%):

- Ti-rich starting powder
- martensitic, shape-memory properties (1-way-effect by heating)
- no pseudoelasticity

Mechanical Properties

Influence of total porosity and pore size – same Ni-content (49.7 at.%)

Porosity [%]	E [GPa]	σ _{d50} [MPa]
50	5.2	> 500
70	0.9	> 65

Cell Culture Experiments

Adhesion and proliferation of hMSCs on MIM19 samples

SEM images demonstrate the growth of the hMSCs in the porous structure.

Manuel Köhl, 25. April 2008

Application for long term implants

- Low impurity contents lead to very good mechanical properties of porous NiTi
- Ni-rich samples show pseudoelasticity > 6%
 → elastic limit of bone ~ 2%
- Sufficent stability during handling and for long term applications
- For low compressions, Ni-rich NiTi follows the mechanical properties of spongiosa
 - \rightarrow Reduced risk of stress shielding

Energy Absorbers

- Pseudoelasticity properties > 6%
- $E_{abs.}$ > 7 MJ/m³ \rightarrow Reversible
- $E_{abs.} > 150 \text{ MJ/m}^3 \rightarrow \text{Maximum}$
- Porosity in combination with shape memory properties lead to high damping capacity
- Combination of space holder method with MIM process
 → defined damping properties, near net-shape fabrication

Acknowledgements

Thanks to the Sonderforschungsbereich459 for fincancial support.

Thank you for your attention.

Manuel Köhl, 25. April 2008