SiO₂ Dry Etching with the Expanding Thermal Plasma Technique

The possibility for Phosphorus Silicate Glass (PSG) etching for Solar Cell Applications

Ahmed Kagilik Erwin Kessels and Richard van de Sanden

Department of Applied Physics Plasma and Materials Processing (P&MP) Eindhoven University of Technology, The Netherlands

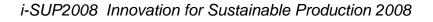
i-SUP2008 Innovation for Sustainable Production 2008 23 April 2008

Outline

Motivation

- plasma processing for solar cells:
 - To lower the cost of PV industry
- Expanding Thermal Plasma:
 - Solar cells processing

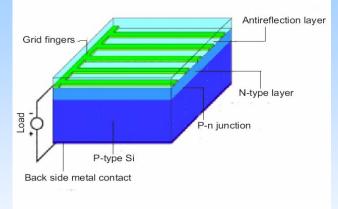
Experimental setup


Expanding Thermal Plasma Technique

Experimental results

- > In situ and ex situ spectroscopic ellipsometry measurements
- photoconductance decay measurements

Conclusions/Outlook



Solar cells - status and perspective

- Recently, solar cells are wafer-based crystalline silicon technology.
 - ~ 90 % of current production solar cells
 - High efficiency
 - Lab: 24.7 %, module: 22.7 %
- Various thin film technologies are developed (second generation)
 - Relatively cheap, moderate efficiency
 - Lab: 18.4 %, module: 13.4 %
- New technologies (third generation)
 - Very cheap, moderate efficiency (~10-15 %)
 - Relatively expensive, very high efficiency (> 30 %)

Schematic illustration of the solar cell structure

Eindhoven University of Technology

Solar cell processing sequence

Standard industrial solar cell

Process	Conventional wet process (reference)		
Saw damage removal	NaOH		
Pre-diffusion cleaning	HNO ₃ etch		
Emitter diffusion	POCI ₃ diffusion		
PSG removal	HF-Dip		
Anti-reflection coating	SiN _x deposition		
Metallization	Front and back contact screen printing		
	Co-firing		

Solar cell processing sequence

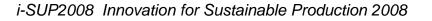
Replacing wet processing by dry one

Process	Conventional wet process (reference)	Dry plasma process		
Saw damage removal	NaOH	SF ₆ plasma		
Pre-diffusion cleaning	HNO ₃ etch			
Emitter diffusion	POCI ₃ diffusion*			
PSG removal	HF-Dip	CHF ₃ /SF ₆ plasma		
		Surface conditioning and cleaning		
Anti-reflection coating	SiN _x dep	eposition		
metallization	Front and back contact screen printing			
	Co-firing			

*Also POCl₃ diffusion can be replaced by dry deposition of phosphorous containing glass

e Technische Universiteit Eindhoven University of Technology

Phosphorous Silicate Glass (PSG) etching SiO₂ etching


Emitter diffusion:

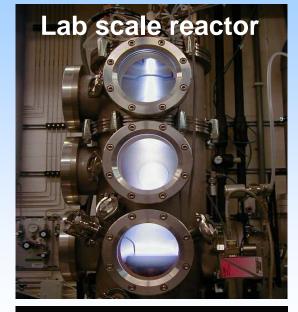
Emitter diffusion is carried out by using POCl₃ as dopant source in O₂ atmosphere at 800°-900°C.

- PSG layer normally is removed by HF dip (wet chemically etching).
- □ PSG has very similar properties of SiO₂

PSG, ~ 50 nm	
n-Si, ~ 500 nm	
p-Si, ~ 300 µm	
n-Si, ~ 500 nm	
PSG, ~ 50 nm	
1.00, ~ 30 mm	

SiO₂/PSG etching typical results

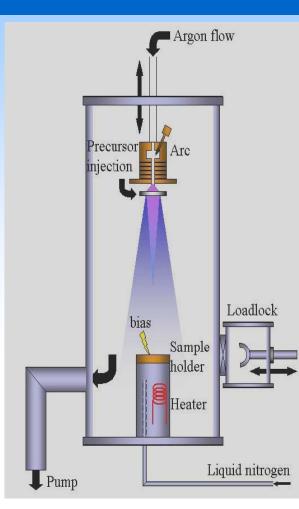
Plasma etching system	Etching gases used	Etch rate	Reference
RIE system	CHF ₃ /O ₂	17 nm/min (PSG)	S. Schaefer et al., 1999
MWRIE	CF ₄ /C ₂ H ₄	~ 30 nm/min (SiO ₂) optimum selectivity	J. Rentsch et al., 2003
ECR-RIE	CF ₄ /C ₂ H ₄ /Ar	37 nm/min (SiO ₂)	K. Roth et al., 2004
PECVD batch reactor	CHF ₃ /SF ₆	~ 3 nm/min (PSG)	A. Nositschka et al., 2003


Expanding Thermal Plasma Technique (ETP)

- First patent 1989 from Eindhoven Univ.
- o Many materials by choice of precursor
 - a-Si:H
 - μc-Si:H
 - a-SiN_x:H
 - a-C:H
 - SiO₂
- High rate process (4 20 nm/s)
- Remote operation
- Industrialized by OTB Solar for a-SiN_x:H deposition (DEPx)
 - Big industrial solar cell manufacturers

W. M. M. Kessels et al., Journal of Vacuum Science & Technology A, 20(5), 2002B. Hoex et al., Prog. Photovolt: Res. Appl. 2005; 13:705

i-SUP2008 Innovation for Sustainable Production 2008



Technische Universiteit **Eindhoven** University of Technology

Expanding Thermal Plasma Setup

Cascaded arc plasma source

high pressure (~ 600 mbar) $n_e \sim 10^{22} \text{ m}^{-3}; T_e \sim 1 \text{ eV}$ $\phi_{Ar}: 25 - 100 \text{ sccs}$

Expanding plasma

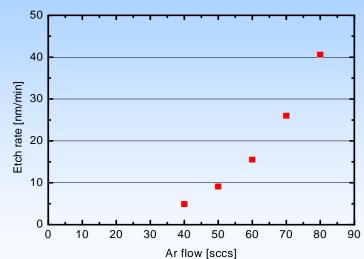
low pressure (~ 0.35 mbar) n_e ~ 10^{17} - 10^{19} m^{-3}, T_e ~ 0.3 eV

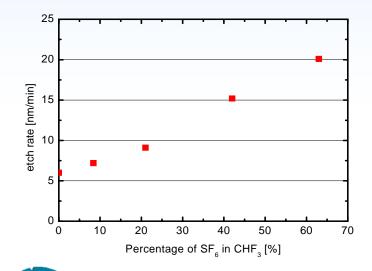
Precursor injection

Trifluormethane (CHF_3) Sulfur Hexafluoride (SF_6)

Sinusoidal 13.56 MHz RF substrate bias technique (ion bombardment)

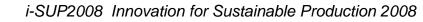
Basic principle:


- Efficient argon plasma generation at high pressure
- Supersonic expansion from high to low pressure
- Plasma chemistry separated from plasma generation
- Low electron temperature: <u>ion-induced reactions</u>
- Controlled substrate conditions (Temperature and external RFbias)


Fechnische Universiteit

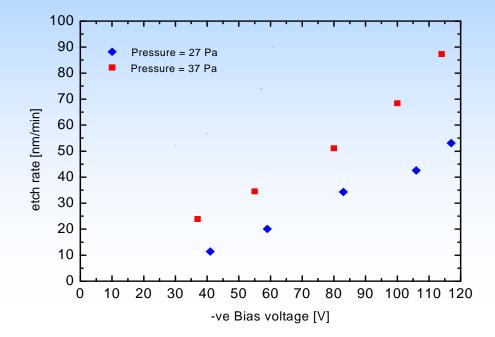
Experimental results

- Effect of gas flow rates on the oxide etching:
 - Etch rate increases by increasing of the Ar flow. This is due to the increasing of the plasma source efficiency.


 High SF₆ flow gives higher SiO₂ etch rate due to the increase of the active F containing species.

Transfer from Ar+ to molecular ions

- $Ar^+ + SF_6 \rightarrow Ar + SF_5^+ + F$ (Charge transfer)
- $SF_5^+ + e^- \rightarrow SF_4 + F$ (Dissociative recombination reactions)



Technische Universiteit **Eindhoven** University of Technology

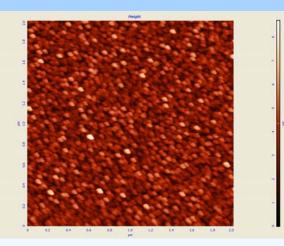
Substrate bias voltage dependence

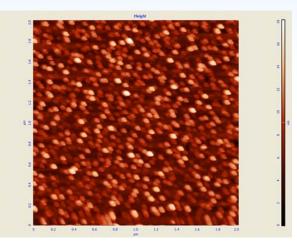
- Etch rate is controlled by ion flux and ion energy.
- Ions for bombarding the wafer surface arise from RF biasing

- At higher pressure:
 - ➤ smaller beam diameter
 - Iarger etching radical flux flowing to the substrate.

rf power range (5 - 40 watt)

Impact of substrate biasing on surface roughness

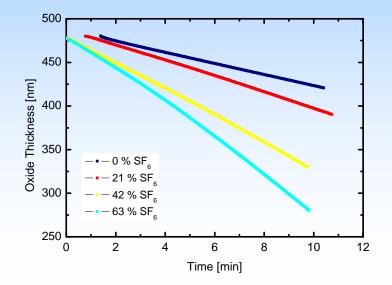

AFM images of SiO_2 film surface

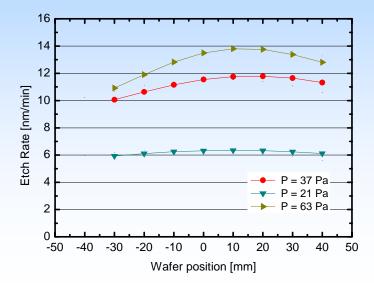

0 V substrate bias

- o etch rate = 9.1 nm/min
- RMS roughness = 1.05 nm

- 130 V substrate bias
 - etch rate = 40.7 nm/min
 - RMS roughness = 2.44 nm

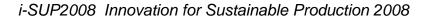
High bias gives rougher SiO_2 film surface.





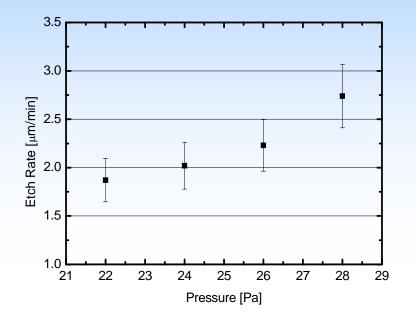
Spectroscopic ellipsometry

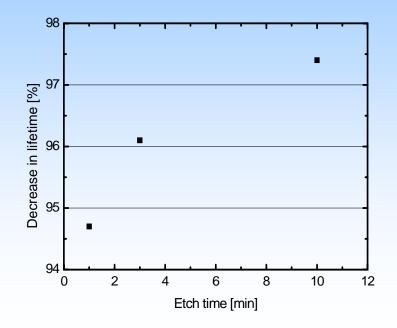
SiO₂ etch uniformity characteristics



- SiO₂ film etch rate is almost constant:
 - Polymer layer may not completely removed.

 Best uniformity is obtained at low pressure: larger beam diameter

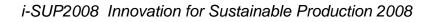



Saw damage layer removal by SF₆ plasma

Plasma induced damage

photoconductance decay measurements

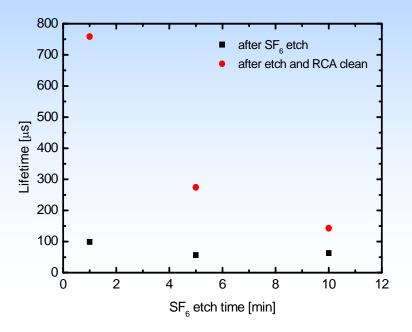
High Si etch rate can be obtained with ETP technique

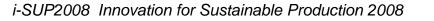

Time dependence of Si etching using ETP technique

The degredation of the lifetime is attributed to the plasma induced damage layer.

Technische Universiteit

Jniversity of Technology




Saw damage layer removal by SF₆ plasma

Induced plasma damage layer removal

- Wet chemical back etch (RCA clean) process:
 - > Layer of 1 to 2 nm has been etched.
 - Plasma Induced damage is partially removed by
 - more than 90 % of the original lifetime can be recovered when short plasma etching time is applied (~ 2.7 mm Si etched layer),

e Technische Universiteit Eindhoven University of Technology

SiO₂/PSG etching typical results

Plasma etching system	Etching gases used	Etch rate	DC Bias	Reference
RIE system	CHF ₃ /O ₂	17 nm/min (PSG)	340 V	S. Schaefer et al., 1999
MWRIE	CF ₄ /C ₂ H ₄	~ 30 nm/min (SiO ₂) optimum selectivity	~ 300 V	J. Rentsch et al., 2003
ECR-RIE	CF ₄ /C ₂ H ₄ /Ar	37 nm/min (SiO ₂)	370 V	K. Roth et al., 2004
PECVD batch reactor	CHF ₃ /SF ₆	~ 3 nm/min (PSG)	RF plasma	A. Nositschka et al., 2003
ETP system	CHF ₃ /SF ₆	~ 40 nm/min (SiO ₂) (more than 80 nm/min)	No Bias (With bias)	This work

Conclusions

- Silicon oxide etching using fluorine-containing gases has been demonstrated (for the first time) with the ETP technique.
- High etch rates (> 40 nm/min) have been achieved even in the absence of the biasing sources.
- Plasma parameters have a significant impact on the SiO_2 etch rate.
- Etch rate is almost constant and uniform during the etching process.
- By wet chemical back etch, the induced damage layer can be removed.

Outlook:

Further investigation:

- > Determine and optimize of SiO_2/Si etch selectivity.
- Replace wet chemical back etch with dry one (complete dry process)
- > Expanding Thermal Plasma for Photovoltaic Applications:
 - Phosphorous silicate glass (PSG) etching
 - Silicon solar cells texturisation.

Acknowledgements

- o Michiel Blauw
- o Bram Hoex
- Ries van de Sande
- o Janneke Zeebregts
- Kashish Sharma

