

Laser Surface Texturing

Izhak Etsion

Dept. of Mechanical Engineering Technion, Haifa 32000 Israel etsion@technion.ac.il

LST Regular Micro-Surface Structure in the Form of Micro-dimples

dimensionless minimum clearance : $\delta = h_0 \left/ (\left. 2 r_p \right. \right)$

dimensionless local film thickness : $H = h/h_0 = H(\varepsilon, \delta)$

micro-dimple aspect ratio : $\mathcal{E} = h_p / (2r_p)$

A Mechanical Face Seal

Ring on Ring Scheme

Test rig arrangement

Friction Torque vs. Face Loading for Textured and Non-textured Seals in Water

Schematic of a partial laser surface textured mechanical seal

Partial (on the Right) and Full (on the Left) Face Laser Texturing

Friction Torque vs. Sealed Pressure for Non-textured and Partial Textured Seals

Field Test with Water Pump

Carbon Ring - Standard Seal After 400 Hours

WC Ring - Standard Seal After 400 Hours

Field Test with Water Pump

Carbon Ring - LST Seal After 550 Hours

WC Ring - LST Seal After 550 Hours

Pressure Distribution in a Stepped Slider (a), and in a Surface Textured Parallel Slider (b)

Results for Infinitely Long Slider.

Bearing Mating Surfaces Showing a Textured Flat Stator and a Flat Rotor

Unidirectional (a) and a bi-directional (b) versions of the partial LST thrust bearing

b

а

Schematic of the Test Rig

Comparison of Partial LST Bearings and a Non-textured Bearing Friction at 1500 rpm

Internal Combustion Engines

- Lower fuel consumption
- Reduced exhaust levels and operating temperatures
- Minimized cylinder wear and mechanical losses

Piston Group

Laser Textured Piston Ring

Laser Textured Piston Ring

Force Balance – Engine

Reciprocating Test Rig

Piston Rings Holder

Piston Rings and Cylinder Liner

Test Results

Ford transit engine on the test bench

Cross sections of cylindrical (a) and barrel shape (b) Cr coated piston rings

Partial LST cylindrical face piston ring

Title: Subregion Note: X offset:37 Y offset:0

Engine specific fuel consumption vs. engine speed.

Series 1: Barrel, chrome coated, baseline, Series 2: Flat, chrome coated, laser treated, Series

3: Flat, no chrome, laser treated

Piston pin and bearing

Tape moving over a LST guide

Impact of LST on Lubrication Regime Transition

Distribution of researchers by countries of origin

Algeria	Japan
Argentina	Netherlands
Brazil	Poland
Czech Republic	Sweden
Finland	Switzerland
France	Turkey
Germany	UK
Greece	USA
Israel	

Summary

- Laser surface texturing has emerged in recent years as a viable means of enhancing tribological performance.
- The laser is extremely fast, clean to the environment and provides excellent control of the shape and size of the micro-dimples, which allows realization of optimum designs.
- Several applications were shown to benefit from LST. These include dynamic sealing, thrust bearings, magnetic recording and internal combustion engines.
- Most of this work is still in a stage of theoretical modeling and laboratory testing. LST was successfully applied to mechanical seals resulting in up to 60% friction reduction and threefold increase in seal life in pumps operating in the field
- This success is attributed to the theoretical modeling of LST under full fluid film conditions, which gave good agreement with laboratory tests and permitted optimization of the LST parameters.
- It is envisaged that with the continuing R&D effort more applications may benefit from LST in the coming years.

Comparison of Theoretical and Experimental Results of LST Mechanical Seal

Enlarged View of Rotor - Carbon Specimen Interface

Torque vs. Time (Baseline rotor)

Torque Average Torque RPM RPM Torque (N-m * 100) RPM 14000 RPM 34.47kPa 3.45kPa 6.90kPa 10.34kPa 13.79kPa 17.24kPa 20.68kPa 24.13kPa 27.58kPa 60 65 70 75 80 85 90 95 100 105 110 10 15 20 **ELAPSED TIME (MINUTES)**

BASELINE ROTOR

Torque vs. Time (LST rotor)

Average Torque vs. Time, Comparison of Baseline & LST Rotors at 12,000 rpm

BASELINE & LST ROTORS

ELAPSED TIME (MINUTES)

Typical Pressure Distributions and Maximum Load Capacity

A Comparison of Partial LST Bearing and Non-textured Bearing Performance

