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Laser Surface Texturing



LST Regular Micro-Surface Structure in 
the Form of Micro-dimples



Hydrodynamic pressure distribution 
over a single “protrusion”

Hydrodynamic pressure distribution 
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dimples

- complicated etching 
technology

- high wear

- high leakage (seals)

- simple & cheap laser 
technology

- lower wear

- low leakage/spacing

“protrusions
”

Why dimples ?Why dimples ?



Film Thickness and Geometry of Micro-DimplesFilm Thickness and Geometry of Micro-Dimples
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A Mechanical Face Seal



Ring on Ring Scheme
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Test rig arrangementTest rig arrangement



Friction Torque vs. Face Loading for 
Textured and Non-textured Seals in Water
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Schematic of a partial laser surface 
textured mechanical seal

Schematic of a partial laser surface 
textured mechanical seal
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Partial (on the Right) and Full (on the Left) 
Face Laser Texturing



Friction Torque vs. Sealed Pressure for 
Non-textured and Partial Textured Seals
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Field Test with Water Pump



Field Test with Water Pump



Pressure Distribution in a Stepped Slider (a), 
and in a Surface Textured Parallel Slider (b)
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Results for Infinitely Long Slider. Results for Infinitely Long Slider. 

  B = 50 ;  δ  = 0.2 ;  Sp = 50%
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Bearing Mating Surfaces Showing a 
Textured Flat Stator and a Flat Rotor



Unidirectional (a) and a bi-directional (b) 
versions of the partial LST thrust bearing

a b 



Schematic of the Test Rig



Comparison of Partial LST Bearings and  a 
Non-textured Bearing Friction at 1500 rpm
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Internal Combustion Engines

 • Improved lubrication, speed and
power

 • Lower fuel consumption
 • Reduced exhaust levels and

operating temperatures
 • Minimized cylinder wear and

mechanical losses



Piston Group



Laser Textured Piston RingLaser Textured Piston Ring

Cylinder Liner

Piston

Textured Piston Ring



Full Textured Piston
Ring Segment

Partially Textured Piston
Ring Segment

Textured Friction Surface

Laser Textured Piston RingLaser Textured Piston Ring



Force Balance – EngineForce Balance – Engine

P = 0P(τ)

Cylinder

Piston 
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Reciprocating Test Rig



Piston Rings Holder



Piston Rings and Cylinder Liner



Test ResultsTest Results

P= 0.3 MPa
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Ford transit engine on the test 
bench



Cross sections of cylindrical (a) and barrel 
shape (b) Cr coated piston rings

(a) (b)



Partial LST cylindrical face piston ring



Engine specific fuel consumption vs. engine speed.

Series 1: Barrel, chrome coated, baseline, Series 2: Flat, chrome coated, laser treated, Series 

3: Flat, no chrome, laser treated
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Piston



Piston pin and bearing



Tape moving over a LST guide



Impact of LST on Lubrication Regime 
Transition



Distribution of researchers by 
countries of origin
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• Laser surface texturing has emerged in recent years as a viable means of 
enhancing tribological performance. 

• The laser is extremely fast, clean to the environment and provides excellent 
control of the shape and size of the micro-dimples, which allows realization 
of optimum designs. 

• Several applications were shown to benefit from LST. These include 
dynamic sealing, thrust bearings, magnetic recording and internal 
combustion engines. 

• Most of this work is still in a stage of theoretical modeling and laboratory 
testing. LST was successfully applied to mechanical seals resulting in up to 
60% friction reduction and threefold increase in seal life in pumps 
operating in the field 

• This success is attributed to the theoretical modeling of LST under full 
fluid film conditions, which gave good agreement with laboratory tests and 
permitted optimization of the LST parameters.

• It is envisaged that with the continuing R&D effort more applications may 
benefit from LST in the coming years.

SummarySummary





Comparison of Theoretical and Experimental 
Results of LST Mechanical Seal
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Enlarged View of Rotor - Carbon Specimen 
Interface



Torque vs. Time (Baseline rotor)
BASELINE ROTOR 
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Torque vs. Time (LST rotor)

ROTOR w/ LST 
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Average Torque vs. Time, Comparison of 
Baseline & LST Rotors at 12,000 rpm

BASELINE & LST ROTORS
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Typical Pressure Distributions and Maximum Load 
Capacity

Typical Pressure Distributions and Maximum Load 
Capacity

Tapered 
W=0.16

Stepped 
W=0.205

Parallel LST 
W=0.16Sp

0.4 < Sp < 0.65



A Comparison of Partial LST Bearing and 
Non-textured Bearing Performance
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