

ABSORTION OF BIOLUBRICANT OXIDATION PRODUCTS IN NANOPOROUS MATERIAL

B. Coto, A. Marcaide, A. Aranzabe, C. Zubizarreta

Fundación Tekniker, Avda. Otaola 20, Eibar, Spain bcoto@tekniker.es www.tekniker.es

- Frame of the work
- Methodology
- Absortion simulations of oxidation products
- Molecular Dynamics simulations
- Future Work

- Modelling can help to select proper materials
- Sorptive behaviour of the oxidation products from a a trimethylolpropane (TMP) ester base oil inside a nanoporous material
- Compressor working conditions of pressure and temperature

- Forcefield based calcultions
 - Each atom has a potential energy associated to surrounding atoms
 - Forcefields contains parameters for the energy expresions

Materials Studio and Compass

- Materials Studio 4.2
- COMPASS Forcefield
 - Widely Validated
 - 13 Terms
 - Bond and non bonding interactions

$$\begin{aligned} & + \sum_{b} \sum_{b} \left[E^{2} \left(e^{-\theta_{0}} \right)^{2} + H_{3} \left(\theta - \theta_{0} \right)^{3} + H_{4} \left(\theta - \theta_{0} \right)^{4} \\ & + \sum_{\theta} \left[V_{1} \left[1 - \cos \left(\phi - \phi_{1}^{0} \right) \right] + V_{2} \left[1 - \cos \left(2\phi - \phi_{2}^{0} \right) \right] + V_{3} \left[1 - \cos \left(3\phi - (3)^{2} + \sum_{\theta} \sum_{b'} F_{bb'} \left(b - b_{0} \right) \left(b' - b'_{0} \right) + \sum_{\theta} \sum_{\theta'} F_{\theta\theta'} \left(\theta - \theta_{0} \right) \left(\theta' - \theta_{0} \right) \\ & + \sum_{b} \sum_{\theta} F_{b\theta} \left(b - b_{0} \right) \left(\theta - \theta_{0} \right) + \sum_{b} \sum_{\phi} \left(b - b_{0} \right) \left[V_{1} \cos \phi + V_{2} \cos 2\phi + (\theta)^{2} + V_{3} \cos 3\phi \right] \\ & + \sum_{b'} \sum_{\phi} \left(b' - b'_{0} \right) \left[V_{1} \cos \phi + V_{2} \cos 2\phi + V_{3} \cos 3\phi \right] \\ & (9) \end{aligned}$$

+
$$\sum_{\theta} \sum_{\phi} (\theta - \theta_0) \left[V_1 \cos\phi + V_2 \cos 2\phi + V_3 \cos 3\phi \right]$$
 (10)

 $E_{-1} = \sum \left[K_{2} (b - b_{2})^{2} + K_{2} (b - b_{2})^{3} + K_{2} (b - b_{2})^{4} \right]$

$$+\sum_{\phi}\sum_{\Theta}\sum_{\Theta'}K_{\phi\Theta\Theta'}\cos\phi\left(\theta-\theta_{O}\right)\left(\theta'-\theta_{O}'\right) + \sum_{i>j}\frac{q_{i}q_{j}}{er_{ij}} + \sum_{i>j}\left[\frac{A_{ij}}{r_{ij}^{9}} - \frac{B_{ij}}{r_{ij}^{6}}\right]$$
(11)
(12)
(13)

Molecules and Sorbent

Tekniker

Cromatographic Analysis

Nanoporous Material

Oxidation Products Molecules

Tekniker ik Energy minimization

optimization

Enorou	Molecule	Length (Á)	Occupied Volume (Á ³)	Surface Area (Á ²)
Energy	Nonanal	10,122	175,660	208,330
Minimization	Nonanoic Acid	10,197	183,470	215,570
	2-Decanone	11,505	193,500	226,800
·Steepest Descents	Decanal	11,546	194,090	227,430
·Conjugated Gradient	2-Undecenal	12,320	205,120	241,840
	Decanoic Acid	11,510	209,810	242,810
Geometry				

Connolly Surfaces: Occupied Volume and Surface Area

Computational Unit Cell

- (100) Surface
- Vacuum Slab: 2D Boundary Condition
- Computational Cell:
- a = 2 nm; b = 1.33 nm; c = 8 nm
- Geometry optimization
- Connolly Surfaces
 - Occupied Volume = 7.23 nm^3
 - Surface area = 2.89 nm^3
 - Free Volume = 14.05 nm^3

Free Pore Volume: 3.4 nm³

- Grand Canonical ensamble
 - System can exchange energy and particles with a surrounding reservoir
 - Resorvoir is described by temperature and fugacities so it is not necessary to simulate it in a explicit way
- Monte Carlo Biased Method
 - Fixed pressure simulations
 - Trial configurations are generated with a probability
 - Acceptance probability depends on the energy of the system congiguration generated
 - Torsional degrees of freedom are taken into account

Absortion Isotherms

- Sorption was studied for T and P from room conditions up to the working conditions of a compressor for each molecule
- Sorption Isotherms were calculated

Tekniker

2-decanone sorption lsotherms

298 K 1 Atm	Molecule	Maximun Load	Average Load	Average Energy (kcal/mol)	Maximun Density (molecules/nm ³)
	2-Undecenal	14,000	13,048	-973,825	0,889
	2-Decanona	16,000	14,527	-591,868	0,990
	Decanoic Acid	15,000	14,655	-988,189	0,998
	Nonanoic Acid	17,000	15,641	-1005,992	1,066
	Decanal	17,000	15,744	-545,818	1,073
	Nonanal	18,000	17,215	-525,937	1,173

Tekniker ik 4

Sorption isobares, Isosteric heats and preferred absortion sites

Fixed Pressure Calculations

• Fixed Pressure calculations allow to obtain the minimun energy configurations for given conditions

Tekniker

 Detailed view of the system is available to study specific interations and conformational analysis

Molecular Dynamics Simulations

Tekniker

Newton's equation is solved for a given potential (COMPASS) Verlet integration 1.5 ns simulations • Step 2 fs. NPT Ensemble Berendsen Thermostat Berendsen Barostat

- Atomic Trajectories
- Dinamical Behaviour

Nonanal 358 K 10 atm

Tekniker ik 4 Trajectories Analysis

Diffusion Coefficient

				Dihedral (Degrees)
Nonanal	T=298 K; P=1atm	T=358 K; P=5atm	T=358K; P=10atm	Legend — P(phi) vs. Dihedral
Diffusivity(nm2 s-1)	4,12.10-4	5,84.10-4	6,79-10-4	

-200

0.004

0

100

200

-100

- Molecular Dynamics Simulations
- Future Work
 - Absortion simulations with mixtures of molecules
 - Different materials
 - Compare with experiments
 - Functionalization and/or doping of the nanopororus materials

- Molecular Modelling simulations have been carried out to study the absortion of oxidation producs of an TMP ester oil in a porous nanomaterial for compressor applications
- Geometry optimization was done to obtain lengths and volumes for the modelled system
- MC simulations were performed to study the sorption behaviour of the oxidation products
- MD calculations were performed in order to study the dynamic behaviour of the system
- Next steps will involve other sorbent nanomaterials and comparison with experimental results

U.E. - 6th FP - IP Soilcy (Contract 515848)

Basque Country Government. Saiotek Program

THANK YOU FOR YOUR ATTENTION