

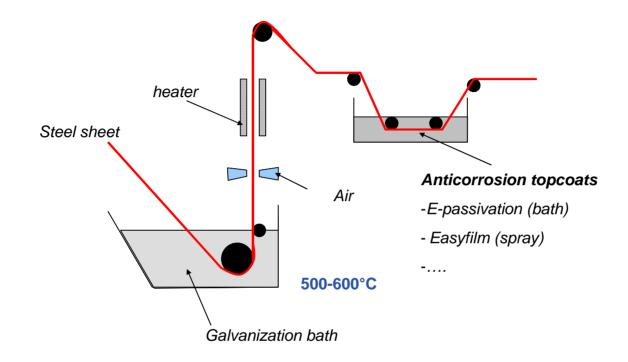
A comparative analysis of industrial coating processes and atmospheric plasma for metal passivation

F. Zimmermann¹, Julien Bardon², <u>Enrico Benetto¹</u>, Joëlle Welfring¹

¹ Centre de Ressources des Technologies pour l'Environnement (CRTE)
 ² Laboratoire des Technologies Industrielles (LTI)
 Centre de Recherche Public Henri Tudor
 Esch/Alzette, Luxembourg

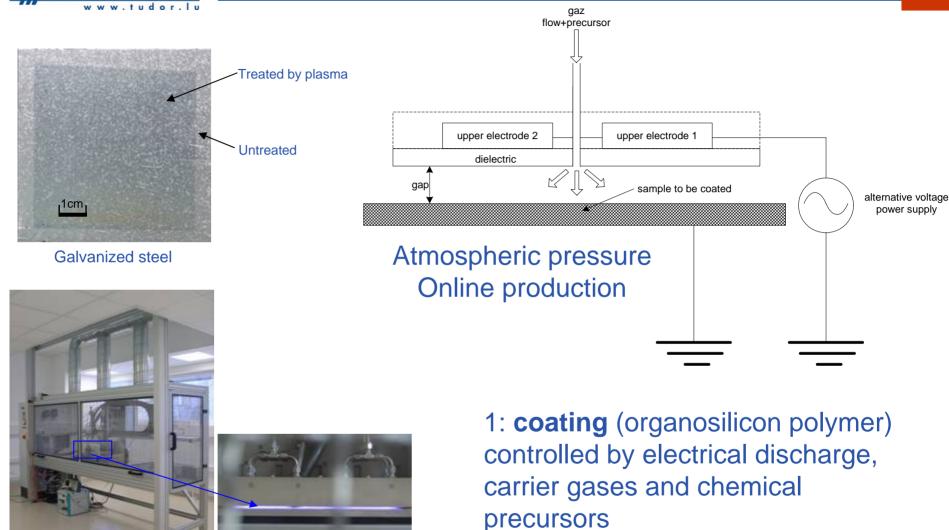
In collaboration with ArcelorMittal Dudelange (Luxembourg)

23 April 2008, i-sup2008



Corrosion protection treatment in the metal finishing industry

- ✓ Need for alternative processes to chromium treatment
- ✓ Atmospheric plasma is a promising process in the field of surface finishing industry (cleaning, activating, coating)
- ✓ Dry-coating technique (= <u>perceived</u> as environmentally friendly)
 - Atmospheric plasma : a sustainable alternative to wet coating processes for metal passivation?


Metal finishing: galvanized steel topcoat

Industrial galvanisation line and anticorrosion topcoat

Atmospheric plasma based coating

2: **curing** (plasma post-treatment)

Technology 1 : E-passivation (wet mineral coating)

- \checkmark Water-based solution spread onto the surface of metal by roll coaters.
- ✓ Solution: Zinc dihydrogenophosphate (10÷25%), manganese dihydrogenophosphate (2.5÷10%), hexafluorotitanic acid (2.5÷10%).
- ✓ Proven industrial technology

Technology 2 : Easyfilm (wet organic coating)

- \checkmark Water-based solution spread onto the surface of metal by roll coaters.
- ✓ Solution : acrylic polymers in aqueous solution.
- ✓ Proven industrial technology
 - Technology 3 : ppHMDSO (dry organic coating)
- ✓ Plasma polymerized **hexamethyldisiloxane** (ppHMDSO).

✓ Pure organic siloxane atomized into a plasma zone, broken down, rearranged and deposited as a polymer at the surface of metal.

Economic comparison

	E- passivation	Easyfilm	ppHMDSO
Qualitative evaluation of coating process costs		\odot	$\overline{\mathbf{i}}$

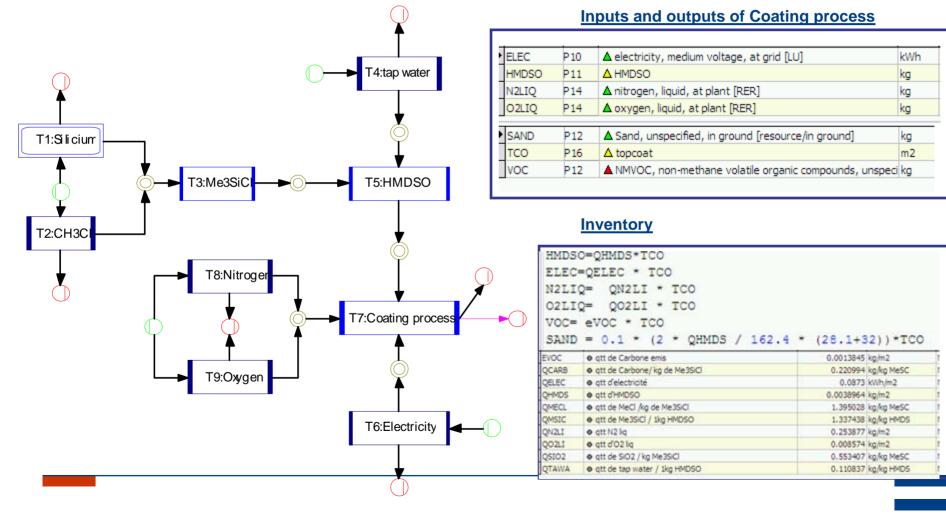
Detailed coating process costs of ppHMDSO technology

	HMDSO raw material	Gas flows (N ₂ and O ₂)	Electrical energy	Total cost
Cost	0.096 €⁄m²	0.777 € m²	0.006 €/m²	0.879 € m²

Technical comparison

Resistance to corrosion

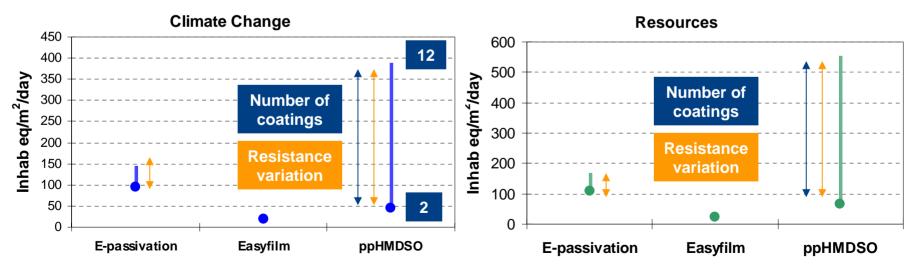
	E-passivation	Easyfilm	ppHMDSO
Salt spray Criteria: time needed to have 5% of corrosion pits [days] (experimental)	2 to 3*	20 to 21*	10 to 14**
Electrochemistry <u>Criteria</u> : corrosion intensity [A/cm ²] (experimental)	8.02 E-6*** (☺)	3.34E-7*** (☺☺)	1.51 E-7** (☺☺☺)


- * Experimental figures from industry
- ** Provisional experimental figure from CRP H. Tudor
- *** Experimental figure from CRP H. Tudor

Environmental comparison

Based on simplified Life Cycle Assessment (LCA, ISO14040-44)

- raw materials and energy consumption lifecycles
- ecoinvent database (www.ecoinvent.ch) and Umberto® software tool



Functional unit : one-day resistance to corrosion of the annual production of metal sheets of the industrial partner

Resistace to corrosion	E-passivation	Easyfilm	ppHMDSO
Criteria: time to 5% corrosion [days] (experimental)	2 to 3	20 to 21	10 to 14

3 damage categories : Human health, Ecosystem Quality, Resources1 impact category: Climate Change

Contribution analysis

Process phase	N ₂ feed (from liquid N ₂)	Electricity	CH₃CI Production	Others
Contribution to damages on targets	73 to 82 %	7 to 14 %	5 to 16 %	2 to 3 %

- ✓ Depends on the damage category considered
- ✓ Carrier gas contributes the most to environmental impacts (and economic costs!)
- \checkmark Consider the replacement of liquid $\rm N_2$ supply with filtered compressed air

1- E-passivation

- ✓ cost-effective,
- \checkmark low resistance to corrosion but sufficient for many customers.
- ✓ lowest <u>absolute</u> contribution to environmental damages
- ✓ high contribution per unit of corrosion resistance.

Suggested technology for low resistance to corrosion needs

2- Easyfilm

- \checkmark more expensive but high resistance to corrosion.
- ✓ low <u>absolute</u> contribution to environmental damages
- ✓ lowest contribution per unit of corrosion resistance.

Whenever corrosion appears to be a critical factor, the Easyfilm topcoat is suggested.

3- ppHMDSO

✓ most expensive and not competitive yet compared to other technologies

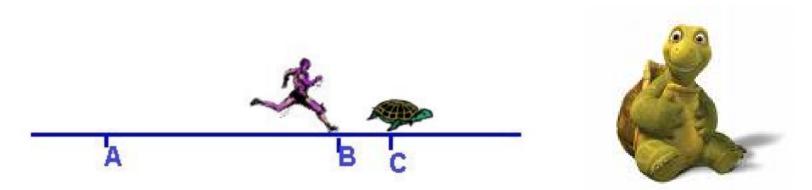
 \checkmark anti-corrosion is by now of high quality and is continually improving.

✓ Wide range of variation of the environmental damages depending on the operating conditions and the resistance to corrosion level.

✓ The N_2 feed gas contributes at least by 73% to the damages and represents nearly 90% of the ppHMDSO process cost.

Costs and **environmental damages** are strongly connected

Optimization of material and energy flows required to improve the competitiveness of atmospheric plasma for large-scale coating


1- **Optimised** use of carrier gas and inerting gas flows. Promising solution (being tested) might be a combination of :

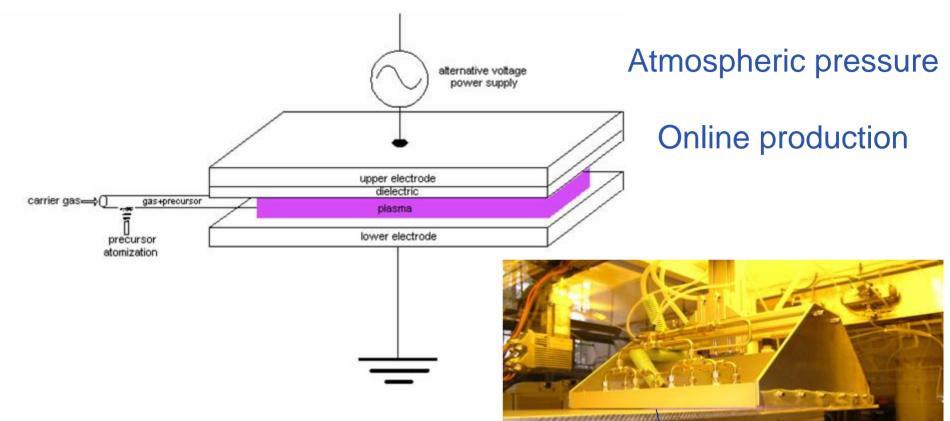
- \checkmark use of air as gas feed instead of oxygen and (part of) $\rm N_2$
- \checkmark a decrease of the gas (and HMDSO) flow

2- Required anti-corrosion efficiency:

- \checkmark Set anti-corrosion resistance according to customers' needs
- ✓ while lowering the electrical energy demand by decreasing the required number of coating and curing time, and/or by increasing the coating speed

It is important to recognize that plasma technology development for coating will be a marathon, not a sprint

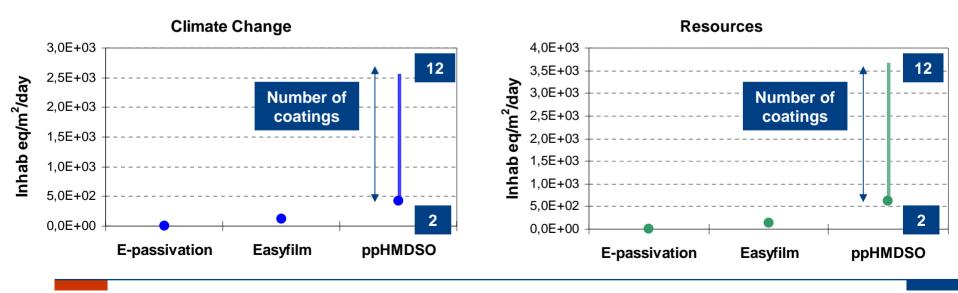
Thank you for your attention !


Current status and perceived

advantages/drawbacks of technologies

<u>Technology</u>	E-passivation	Easyfilm	ppHMDSO
Status	Existing industrial process	Existing industrial process	Process in R&D
Perceived Advantages from survey	-Cost-effective -Process easy to implement/operate	-Very competitive coating quality -Easy process	Innovative and environmentally friendly alternative to wet chemical processes
Perceived drawbacks from survey	-Not sustainable -Limited performance	Costly	Not implemented yet at industrial scale Costly?

Principle of atmospheric plasma



Deposition of coating controlled by electrical discharge, carrier gases and chemical precursors

Functional unit : unit of corrosion resistance of the annual production of metal sheets of the industrial partner

Resistace to corrosion	E-passivation	Easyfilm	ppHMDSO
Criteria: corrosion intensity [A/cm ²] (literature)	8.02 E-6	3.34E-7	1.51 E-7

