

# **Corrosion-wear studies on PVD coatings for aeronautical applications.**

#### R. Bayón, A.Igartua, U. Ruiz de Gopegui, G. Mendoza

Fundación TEKNIKER (www.tekniker.es), Avda. Otaola 20, Eibar, Spain



#### **Introduction**

ik 4

Tekniker

The use of hard chromium as protective coating in several aeronautical applications is nowadays one of the greatest environmental problems due to the presence of **chromium VI** in the plating bath used in the deposition process.







#### **Examples**

- $\checkmark$  Landing gear
- $\checkmark$  Engine components
- ✓ Propeller hubs

## ✓ Actuators (hydraulic/pneumatic actuators used throughout aircraft)

✓ Helicopter *dynamic components* (including gearboxes, rotor reads and damper components)









#### **Objectives of this work**

✓ Application: <u>aircraft engine components</u>: turbines

✓ Material: Inconel, nickel based superalloy with high resistance to oxidation and corrosion and high strength over a wide range of temperatures.

In the manufacturing of aircraft engine turbines, inconel usually is coated with hard chromium for increasing its wear resistance





<u>*PVD coatings*</u> are proposed as clean alternatives for replacement hard chromium





#### **Conditions**

Hard Cr alternatives must to overcome several tests required in the aeronautics protocols:

- $\checkmark$  Adhesion to bent
- ✓ Tensile adhesion
- ✓ Electrochemical corrosion resistance
- ✓ Salt fog (3000 hours)
- ✓ Micro-hardness(>600 Kg/mm<sup>2</sup>)

- ? Axial fatigue tests
- ? Galvanic corrosion resistance
- ? Coating toughness
- ? Residual Stress ALMEN
- ? Fretting

#### Tests on real Component-Fretting at 400°C against AMS 6491

- Monolayer of CrN by PVD catodic arc
- Multilayer of TiN/CrN by PVD cathodic arc

turbine hold

Have passed the first required tests



#### **Surfaces Characteristics**

I nconel Composition

| → | element | С    |  |  |
|---|---------|------|--|--|
|   | %       | 0.05 |  |  |

| ement | С    | Mn   | Si   | Cr    | Ni   | Fe | AI   | Ti   | Mo   | v    | Cu   | NP |
|-------|------|------|------|-------|------|----|------|------|------|------|------|----|
|       | 0.05 | 0.26 | 0.05 | 18.50 | bal. | 17 | 0.47 | 1.15 | 3.11 | 0.03 | 0.04 | 5  |
|       |      |      | -    | -     |      |    |      |      |      |      |      |    |

|              | Hardness(Kg/mm <sup>2</sup> ) | Thickness (µm) |
|--------------|-------------------------------|----------------|
| Inconel      | 276                           | /              |
| Inco+Cr      | 598                           | 120            |
| Inco+CrN     | 1438                          | 6.8            |
| Inco+TiN/CrN | 1211                          | 8              |

| Sample  | Inconel | Inco+Cr | Inco+CrN | Inco+TiN/CrN |
|---------|---------|---------|----------|--------------|
| Ra (µm) | 0.05    | 0.50    | 0.15     | 0.15         |



#### **PVD** coatings properties

#### •Inconel+ CrN monolayer





•Inconel+ TiN/CrN multilayer

#### Calotest



**GD-OES** 



#### Surfaces corrosion behaviour

- ✓ Electrochemical impedance measurements (ELS) periodically 24h,96h,2 weeks
- $\checkmark$  Cyclic polarizations after two weeks
- $\checkmark$  NaCl 0.5M, room Ta, aerated





#### Corrosion Results: EIS measurements



 $\checkmark$  I mprovement of surfaces electrochemical resistance with immersion time  $\checkmark$  Good corrosion behaviour of both surfaces (~ 4M $\Omega$  and 50 k $\Omega$  respectively)

EIS measurements on PVD coatings

ik 4

Tekniker



Similar behaviour during the total exposure to the aggressive media

- Capacitive behaviour, corrosion resistance of the order of  $10M\Omega$
- No coatings porosity is detected



#### Polarization curves

ik 4

Tekniker



 $\checkmark$  Low corrosion currents ~ 10^-9 A/cm²

✓ Passive behaviour



#### Surfaces Tribocorrosion behaviour



⇒Electrochemical cell + Tribometer. (ball on disc configuration).

⇒ Ag/AgCl reference electrode (+0.207 vs SHE).

⇒ Pt counter electrode.

⇒ Potentiostat/Galvanostat.

 $\Rightarrow$  Counter bodies: polished Si<sub>3</sub>N<sub>4</sub> balls (4mm  $\phi$ ).

⇒ NaCI 0.5M

10N, 25 rpm, 6 mm of track diameter

 $\rightarrow$  Friction coefficients and potentials measurements before, during and after wear process

 $\rightarrow$  EIS measurements before and after the wear process



#### Tribocorrosion - Results



|              | Mean μ |
|--------------|--------|
| Inco         | 0.439  |
| Inco+Cr      | 0.460  |
| Inco+CrN     | 0.322  |
| Inco+TiN/CrN | 0.213  |

 ✓ High friction coefficients due to the non lubricated contact

✓ PVD layers reduce
friction specially TiN/CrN
multilayer



#### Potential measurements during wear process



I nconel suffer the most significative potential drop from -0.024 V to -0.479 V

3600s after stop rubbing, the potential in Inconel and Inco+Cr surfaces has not reached yet its initial values

#### EIS measurements before and after the wear

ik4

Tekniker



 $\checkmark$  Corrosion resistance decreases slightly after wear due to the depassivation process on the worn surface area

 $\checkmark$  Mechanical effects influence on the I nconel corrosion behaviour





 $\checkmark$  Electrochemical surface state of hard chromium coating differs notably before and after wear

 $\checkmark$  Mechanical effects reduce its corrosion resistance by altering the formation the protective oxide film on the surface





✓ Electrochemical surface state of CrN is similar before and after wear

✓ Mechanical effects have not affected the corrosion behaviour of the coated surface. Worn area repassivates quickly after rubbing process





✓ Electrochemical surface state of multilayer TiN/CrN is also similar before and after wear showing the highest corrosion resistance under wear conditions

 $\checkmark$  The worn area repassivates quickly after rubbing



#### Surfaces state after tribocorrosion tests



 ✓ Significative differences on surfaces worn areas

 ✓ Uncoated inconel exhibit important damage inside the wear track

✓ PVD coatings
show a smoothed
effect



#### Wear tracks topographies

#### Inconel wear track



 $\checkmark$  I nconel wear track shows strong abrasion and cracks.

 $\checkmark$  Track depth reach 4  $\mu m$ 



Inco+Cr wear track



 $\checkmark$  Chromium coating topography reveals low wear (small loss of volume)  $\checkmark Track$  depth is around 1  $\mu m$ 



Inco+CrN wear track



 $\checkmark$  CrN coating topography reveals low wear and abrasion marks

 $\checkmark$  Track depth is similar to the obtained in chromium coated surface, around 1  $\mu m_{,}$  the substrate have been protected during rubbing by the coating



Inco+TiN/CrN wear track



 $\checkmark$  TiN/CrN coating topography reveals insignificant wear

 $\checkmark Track$  depth is less than 0.5  $\mu m_{\text{r}}$ 



#### **SEM-EDS** wear track analysis

#### Inconel wear track





#### Inco+Cr wear track





#### Inco+CrN wear track





#### Inco+TiN/CrN wear track





#### **Conclusions**

Two PVD coatings have been proposed as clean alternatives for replacement hard chromium coatings of the aeronautical industry

CrN and TiN/CrN layers pass successfully the preliminary protocol tests for be employed as aircraft turbine coatings.

Corrosion tests in saline media reveal excellent corrosion behaviour of coatings specially the multilayer structure proposed

► When corrosion and wear are studied simultaneously, TiN/CrN offers the best friction and wear resistance, improving the properties of hard chromium coating. Mechanical effects do not affect the electrochemical resistance of this film



#### Next steps

Inconel+TiN/CrN

- $\rightarrow$  Finish protocol Tests
- $\rightarrow$  Study Fretting behaviour under real conditions





#### **Acknowledgements**

Minister Of Science and Technology for financing the project RAMPE (CIT-370200-2005-18)

Partners involved in the project:

AERNNOVA I TP SENER I NTA GUTMAR CESA







# Thank you!

